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arthritis. An analysis of transmitters involved in de-
scending inhibition (e.g., 5-HT, noradrenaline) has
shown that they are present in increased concentra-
tions in the spinal cords of polyarthritic rats suggesting
that descending inhibition may be increased in the
long-term range in these animals (see Section III.E.3
and 4).

In summary there is evidence for an increase in
heterotopic influences on spinal neurones with input
from inflamed areas. Furthermore recordings which
have been made in anaesthetized cats show the ability
of descending inhibitory influences to reduce the in-
crease of hyperexcitability during arthritis. The mode
of activation and the dynamics of the descending inhi-
bition in the natural biological context is still open. It
may be speculated, however, that the expression of
pain is to some extent modified by the activation of
these descending influences, by reflex mechanisms
and/or by conscious processes and by heterotopic in-
hibitory influences.

HILE. Cellular mechanisms in joint inflammation: ions,
neurotransmitters, neuromodulators and gene expression

The analysis and understanding of the intraspinal
processes involved in inflammation-induced hyperex-
citability is far from complete due to the complex
nature of this matter. The processes involved may
include (1) changes in the ionic environment of neu-
rones, (2) the effects of fast-acting transmitters and
slowly acting modulators on distinct receptor types, (3)
the activation of intracellular second and third messen-
ger systems, (4) additional mechanisms such as gene
expression (see also Dubner and Ruda 1992). This
section summarizes mechanisms and changes which
have been identified in the spinal cord of experimental
animals with acute or chronic inflammatory lesions in
joints.

IIILE.1. Extracellular ion concentration

IILE.1.a. Extracellular [K *],. Electrical stimulation
of myelinated and unmyelinated afferent fibres (Ten
Bruggencate et al. 1974; Czeh et al. 1981) and the
application of noxious stimuli to the skin (Sykova et al.
1980) lead to transient elevations of the potassium
concentration in the spinal cord (measured with ion-
sensitive microelectrodes). Changes of the potassium
concentration show a close relationship to the appear-
ance of field potentials (Somjen 1979; Sykova 1983).
[K*], was also elevated during innocuous flexion of the
knee joint and during electrical stimulation of myeli-
nated group II and III fibres in the PAN, and a small
additional component has been found when noxious
stimuli were applied to the joint or when unmyelinated
fibres in the PAN were electrically stimulated (Heine-
mann et al. 1990). During the development of an acute

inflammation in the knee induced by kaolin and car-
rageenan the stimulus-evoked elevation of [K*], was
found to increase by about 25% (Heinemann et al.
1990). In general the absolute [K*], level reached
depended more on the site and type of stimulation
than on the actual stimulus intensity itself (Heinemann
et al. 1990). The authors concluded that changes in
[K*], were unlikely to explain the changes of excitabil-
ity in the course of inflammation although a contribu-
tion of this mechanism may exist. By contrast long-term
increases of [K*], were observed by Svoboda et al.
(1988) in 75% of the spinal cords of rats following
subcutaneous injection of formalin or turpentine into
the hindpaws and these authors proposed that rises in
extracellular [K*], may play a substantial role in the
changes of excitability during injury.

HLE.2. Excitatory amino acids

In the central nervous system glutamatc acts at
postsynaptic NMDA (N-methyl-p-aspartate) or non-
NMDA receptors (Mayer and Westbrook 1987; Evans
1989; Aanonsen et al. 1990; Headley and Grillner
1990). Following electrical stimulation of peripheral
nerves the responses of spinal cord neurones to single
A- and C-fibre volleys were effectively blocked by
non-selective antagonists of excitatory amino acids
showing that excitatory amino acids arc involved in the
spinal processing of afferent input (Schouenborg and
Sj6lund 1986; Schneider and Perl 1988). The applica-
tion of specific NMDA antagonists did not block the
responses to electrical stimulation of afferent nerve
fibres in neurones in the superficial dorsal horn indi-
cating that non-NMDA receptors are sufficient for the
(monosynaptic) mediation of responses to afferent dis-
charges in A and C fibres (Schneider and Perl 1988). A
contribution of NMDA receptors has, however, been
implicated in the ‘wind-up’ phenomenon which may
occur in spinal cord neurones after repetitive stimula-
tion of C fibres (Davies and Lodge 1987; Dickenson
and Sullivan 1990; Thompson et al. 1990). Wind-up is a
term used to describe successive increases in the mag-
nitude of the responses of a ncurone to a constant
repeated stimulus, and this phenomenon was blocked
by specific NMDA antagonists. This finding indicates
that NMDA receptors may be involved in particular
aspects of the nociceptive processing in the spinal cord.
The contribution of NMDA receptors in spinal cord
activity has also been examined by using natural nox-
ious stimuli. Responses to noxious mechanical stimuli
were shown to be suppressed in neurones in the ven-
tral horn but not in the dorsal horn (Headley et al.
1987). In other studies NMDA receptors have been
shown not to be involved in the processing of noxious
mechanical information in the dorsal horn under ‘nor-
mal circumstances’ but seemed to contribute to de-
layed discharges after the injection of formalin into the



paw (Haley et al. 1990) and to discharges after occlu-
sion of the femoral artery (Sher et al. 1990). Collec-
tively these observations suggest that under particular
conditions NMDA receptors may become more impor-
tant in the nociceptive processing in the spinal cord.
Biophysical studies indicated that the activation of
NMDA receptors needs specific requirements (removal
of Mg?* which blocks the inactivated NMDA channel)
(Mayer et al. 1987; Monaghan et al. 1989) and these
could be achieved by injury-associated activation of
nerve cells.

IILE.2.a. Excitatory amino acids and receptors in
inflammation of the joint. A possible involvement of
NMDA (and non-NMDA) receptors in the spinal pro-
cessing of afferent activity from the inflamed joint has
been studied in the cat and monkey which had devel-
oped a kaolin/carrageenan-induced inflammation in
the knee joint. In the monkey glutamate-like activity
was found to be increased in the lumbar spinal cord on
the ipsilateral side to the injection 4, 6 and 8 h after
induction (Sluka et al. 1992). Using a microdialysis
probe in the lumbar dorsal horn of 10 monkeys the
release of amino acids has also been measured using
HPLC (Sorkin et al. 1992). After intra-articular injec-
tion of kaolin and carrageenan, the release of gluta-
mate- and aspartate-like activity (and also glycine-and
serine-like activity) was transiently increased above the
basal level and this was followed by a second phase
during which more prolonged changes in amino acid
levels were observed which showed peaks 0.5~1.5 h
after the injection of the knee. The secondary increases
in amino acid levels were sometimes of greater magni-
tude than those immediately following the injection
(Sorkin et al. 1992). Whilst these results show an
increased turnover of glutamate and aspartate in the
central nervous system some evidence was also ob-
tained which indicated that the turnover of glutamate
in joint afferents was increased. In these experiments
the proportion of glutamate-containing fibres (mainly
group 111 fibres) in MAN was shown to increase during
the development of acute inflammation (Westlund et
al. 1992) although it is not clear how this relates to the
turnover of glutamate at the nerve terminal.

In order to test the excitability of spinothalamic
tract cells with joint input for excitatory amino acids
Dougherty et al. (1992) applied ionophoretically
NMDA, quisqualate, glutamate and aspartate to 8 neu-
rones and demonstrated excitatory effects. The re-
sponses to these excitatory amino acids showed changes
within several hours of kaolin/carrageenan-induced
inflammation. Whereas responses to quisqualate, glu-
tamate and aspartate increased in 4 of 6 neurones (in
parallel to increased responses to mechanical stimula-
tion) the responses to NMDA were reduced in 6 of 7
neurones. By contrast, foliowing the intradermal appli-
cation of capsaicin (which also increased responsive-
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ness of spinothalamic cells) the responses to NMDA
were enhanced (Dougherty and Willis 1992). The rea-
sons for these differences remain to be clarified.

Schaible et al. (1991a) examined whether the dis-
charges in spinal neurones with input from the in-
flamed joint could be reduced by NMDA antagonists.
The NMDA antagonists ketamine (applied iv. and
ionophoretically) and p-2-amino-5-phosphonovalerate
(AP-5, applied ionophoretically) were found to reduce
activity in about 70% of 71 neurones in the deep dorsal
and ventral horn with input from the inflamed knee, in
doses which suppressed the responses to ionophoreti-
cally applied NMDA but did not or only minimally
reduce those to quisqualate. These effects occurred
within a few minutes of drug application and consisted
of either a reduction in the ongoing discharges and /or
a reduction in the responses to mechanical stimulation
of the knee such as flexion. Ketamine when applied i.v.
was found to be the most effective drug probably due
to the fact that ketamine and AP-5 could only act on 1
cell when applied ionophoretically. These results
showed a significant contribution of NMDA receptors
to spinal cord neurone activity in inflammation but do
not exclude a contribution of NMDA receptors to the
activity in these neurgnes under normal conditions. It
was documented, however, in 9 neurones that i.v. ke-
tamine partly reversed the inflammation-induced activ-
ity which was directly monitored during the develop-
ment of the inflammation-induced hyperexcitability in
some ascending neurones (Schaible et al. 1991a). These
results suggest that hyperexcitability of spinal neurones
during joint inflammation is at least in part a process
which is dependent on continuous synaptic activation
of NMDA receptors. The effects of the NMDA antag-
onists on the hyperexcitable neurones during inflam-
mation could result either from a direct contribution of
NMDA receptors to the depolarization of the neu-
rones or from a reduction of the calcium influx (Mac-
Dermott et al. 1986; Mayer et al. 1987) which may
reduce excitability of the neurones by intracellular
events.

IIL.E.3. Serotonin, tryptophan and 5-hydroxyindoleacetic
acid

Studies of these compounds are of interest since
nociceptive processes in the spinal cord and pain are
modulated via serotoninergic descending inhibitory sys-
tems (see Ruda et al. 1986). 5-HT is a metabolite of
tryptophan (the primary substrate for the synthesis)
and further metabolism of 5-HT results in the forma-
tion of 5-hydroxyindoleacetic acid (Cooper et al. 1986).

HPLC studies of extracts from homogenized spinal
cord, brainstem and forebrain have shown that the
basal levels of these three compounds were signifi-
cantly higher in polyarthritic than in normal rats
(Weil-Fugazza et al. 1979, 1980). The concentration of
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5-HT was found to be increased in the dorsal and
ventral horns of the spinal cord of arthritic rats, and in
general this appeared to be related to an increase in
serum tryptophan availability (Weil-Fugazza et al. 1980;
Godefroy et al. 1987). One conclusion of these studies
was that in chronic arthritic states and in chronic pain
the descending serotoninergic system to the dorsal
horn is more activated (Godefroy et al. 1987). In a
subsequent study the analysis was confined to the
superficial layers of the spinal cords of normal and
polyarthritic rats (3 weeks postinoculation). In the su-
perficial dorsal horn of arthritic rats only 5-hydroxyin-
doleacetic acid was elevated whereas the levels of
tryptophan and 5-HT were not different in normal and
arthritic animals (Godefroy et al. 1990). An enhance-
ment of 5-HT-li in the lumbar spinal cord of pol-
yarthritic rats has also been observed in immunocyto-
chemical studies (Schoenen et al. 1985; Marlier et al.
1991). In some of the polyarthritic rats studied 15, 30
and 60 days postinoculation Schoenen et al. (1985)
found heavier 5-HT-li in laminae I, VIII and in the
ventro-medial group of motoneurones. Marlier et al.
(1991) performed an image analysis of sections treated
immunocytochemically for detection of 5-HT and ele-
vated levels of 5S-HT-li were detected in laminae I/11
and II1/1V from 2 weeks to 4 months postinoculation.
Indeed there was almost a doubling in the levels of
5-HT-li in laminae I and II at 1 month in the arthritic
animals compared to controls. Although these studies
differ to some extent (e.g., laminar localization of ele-
vated levels) they agree in that the serotoninergic sys-
tem seem to be more active in polyarthritic rats.
Weil-Fugazza et al. (1979) tried to influence the
levels of tryptophan and 5-hydroxyindoleacetic acid by
i.v. administration of morphine in normal and arthritic
rats, Tryptophan and 5-hydroxyindoleacetic acid levels
were increased 1 hour after the subcutaneous applica-
tion of 10 mg/kg morphine, and this increase was
more pronounced in arthritic animals. The authors
concluded that there is an activation of the 5-HT
metabolism in animals suffering from chronic pain and
that there is a greater modification of the 5-HT
metabolism in arthritic animals by morphine. Lower
doses of morphine did not, however, change the levels
of tryptophan and 5-hydroxyindoleacetic acid, neither
in the superficial nor in the deep dorsal horn, and this
suggests that the analgesic effect of low doses of mor-
phine does not involve the activation of serotoninergic
descending inhibition (Godefroy et al. 1990).

IILE.4. Norepinephrine and uric acid

Some nerve fibres which descend from the brain-
stem to the spinal cord are known to use nore-
pinephrine (noradrenaline) as one of their neurotrans-
mitters (see Ruda et al. 1986) and in order to study
possible modifications of this system the level of nore-

pinephrine in the spinal cord has been compared in
normal and polyarthritic rats (6 weeks postinoculation)
by HPLC analysis of homogenized spinal cords (Weil-
Fugazza et al. 1986). Six weeks postinoculation the
levels of norepinephrine and uric acid were signifi-
cantly higher in spinal cords of arthritic rats than in
cords of normal rats, and in addition the rate of
disappearance of noradrenaline in the dorsal part of
the cord in arthritic rats was increased. These results
suggest an activation of descending adrenergic systems
during chronic polyarthritis and they indicate that
changes occur in purine catabolism (Weil-Fugazza et
al. 1986). An interaction of noradrenergic pathways
with the analgesic action of opioids during conditions
of acute cutaneous inflammation has recently been
shown in behavioural experiments in which intrathecal
application of the alpha,-adrenoceptor antagonist ida-
zoxan blocked the antinociceptive effect of morphine
(Hylden et al. 1991). Evidence supporting these obser-
vations comes from experiments where adrenal
medullary implants in the spinal cord of polyarthritic
rats reduced vocalizations when the system was stimu-
lated with nicotine; this effect was assumed to be
opioidergic since naloxone completely blocked the
nicotine-stimulated reduction in vocalizations (Sagen et
al. 1990).

IIL.E.5. Neuropeptides

In the spinal cord a considerable number of neu-
ropeptides has been identified which are contained in
central terminals of afferent fibres and/or intrinsic
interneurones and/or axons of descending neurones
(Luttinger 1984; Ruda et al. 1986; Besson and Chaouch
1987; Duggan and Weihe 1991). Some of them have
been shown to be intraspinally released, either sponta-
neously or by electrical stimulation of afferent nerve
fibres and/or different noxious stimuli (Duggan and
Weihe 1991). Neuropeptides may have either presy-
naptic effects influencing the release of other transmit-
ters such as glutamate (Kangra et al. 1990) and/or
postsynaptic actions causing excitation (e.g., SP) or
inhibition (e.g., SOM, some opioid peptides) of spinal
cord neurones. Compared to the rapid action of excita-
tory amino acids the onset of the postsynaptic effect of
peptides is usually slow and the duration of the effect
may outlast the period of application (Duggan and
Weihe 1991). Neuropeptides may also stimulate molec-
ular events such as gene expression in neurones (Wil-
liams et al. 1989).

Of particular interest are the recent observations
that the neuropeptide content of some dorsal root
ganglia and spinal cord neurones may change during
arthritis or other inflammatory lesions. The precise
functional implications of these alterations have not
been adequately determined but it is worth noting that
changes in the content of neuropeptides are not always



tightly linked to the development of inflammatory le-
sions. Until it is determined whether discrepancies are
due to technical problems (e.g., sensitivity of assays) or
to dynamic changes in the different phases of inflam-
mation firm conclusions seem to be premature. The
following section will summarize studies on neuropep-
tides with special reference to their involvement in
inflammation,

IILE.5.a. Tachykinins. Within the group of the mam-
malian tachykinins, i.e., SP, NKA, NKB (Maggio 1988),
most attention has been directed to SP since it was the
first one postulated to be involved in nociception. SP-li
is contained in afferent fibres including joint afferents
(see Section II.E.), intrinsic spinal neurones and de-
scending axons (see Luttinger 1984; Ruda et al. 1986;
Duggan and Weihe 1991).

HIE.5.a.i. Upregulation in inflammation. In the pol-
yarthritic rat peripheral nerves, dorsal root ganglia
(Lembeck et al. 1981; Colpaert et al. 1983) and spinal
cord (Colpaert et al. 1983; Schoenen et al. 1985; Mar-
lier et al. 1991) contained higher levels of SP-li. Schoe-
nen et al. (1985) described more intense SP-li staining
in laminae I, II and X of the spinal cord 15, 30 and 60
days postinoculation with a maximal effect at the 30
day time-point. Image analysis of immunohistochemi-
cally treated sections of the spinal cord (Marlier et al.
1991) showed an increase to 11-17% over control in
SP-li levels in laminae I and II of lumbar segments

A Control rats
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between 1 and 4 months postinoculation. These changes
were not, however, seen 2 weeks postinoculation even
though inflammatory symptoms were already present
at this stage indicating that changes in peptide content
do not always follow the development of the experi-
mental disease, By contrast Chery-Croze et al. (1985)
found SP-li unchanged in the dorsal half of the cord
and reduced in the ventral cord of polyarthritic rats 20
days postinoculation. SP-li levels were elevated (+69%,
radioimmunoassay) in the dorsal root ganglia C6-7 of
rats with unilateral FCA-induced inflammation in the
region of the carpal joint 15 days postinoculation (no
changes in the contralateral dorsal root ganglia; Smith
et al. 1992).

Thus most studies agree that the synthesis of SP-li is
elevated during arthritis or similar inflammation but it
is not clear whether the inflammatory symptoms and
the changes in SP-li are tightly linked. Clear evidence
for a rapid increase in the biosynthesis of SP-li after
injection of adjuvant into the paw was provided by
measuring the levels of the mRNA encoding prepro-
tachykinin A (PPT-A) (Minami et al. 1989). The levels
of PPT-A mRNA were significantly increased in the
dorsal root ganglia at L4-L6 levels and the lumbar
spinal cord, and these changes were present as early as
day 1 postinoculation. The upregulation of the synthe-
sis may in fact be initiated immediately after a damag-
ing stimulus. Indeed, within 3 h after the injection of

B Polyarthritic rats
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Fig. 9. Release of ir-SP from the lumbar dorsal horn in normal rats (A) and polyarthritic rats (B). Ir-SP was analysed in the perfusate collected in

the dorsal horn with a push-pull cannula. The tip of the cannula was located at a depth of 0.7 mm from the dorsal surface. The stimuli were

noxious pinch of the skin and forced movements of the ankle joint. Samples were collected at 20-min intervals. Noxious pinching of the skin was

performed at a frequency of 1/min (for 30 sec) for 20 min and the ankle joint was flexed and extended for 15 sec each with pauses of 15 sec, for

20 min. (Reproduced and modified from Oku, R., Satoh, M. and Tagaki, H., Neurosci. Lett., 74 (1987) 315-319, with permission from the
authors and Elsevier Science Publishers BV, Amsterdam, The Netherlands).
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formalin into the rat paw the number of dorsal root
ganglia which reacted positively for preprotachykinins,
the precursors of SP and other tachykinins was in-
creased (Noguchi et al. 1988). The SP binding sites in
the spinal cord seem to be reduced in polyarthritic rats
(Mantyh et al. 1988).

IIL.E.5.a.ii. Release of tachykinins. The intraspinal
release of ir-SP in vivo has been studied in the decere-
brate polyarthritic rat, 2-3 weeks after inoculation,
using an in situ spinal cord perfusion method (push-pull
cannula) (Oku et al. 1987) and in the cat, within the
first hours of a developing kaolin/carrageenan-in-
duced inflammation in the knee, using antibody-coated
microprobes (Schaible et al. 1990). In the cat the
release of ir-NKA which is encoded together with SP-li
by the PPT-A gene and is coexistent with SP-li in a
subset of neurones (Maggio 1988; Duggan and Weihe
1991) has also been investigated (Hope et al. 1990a).
Both studies demonstrated increased intraspinal re-
lease of ir-SP under inflammatory conditions. Oku et
al. (1987) found an increased basal release of ir-SP in
polyarthritic rats and significant release over baseline
during forced movements of the ankle joint (consid-
ered as innocuous in normal animals). By contrast
forced movements did not evoke release of ir-SP in the
normal rat whereas noxious pinching of the skin did.
The difference in the release of ir-SP in normal and
polyarthritic rats is displayed in Fig. 9. In the cat
neither ir-NKA nor ir-SP were released into the spinal
cord when the normal joint was stimulated by innocu-
ous mechanical stimuli such as light pressure and
movements within the working range but after induc-
tion of arthritis these stimuli caused release of both
peptides. Although ir-NKA and ir-SP appeared first in
the superficial dorsal horn, in the area where numer-
ous joint afferents terminate (Craig et al. 1988), ir-NKA
seemed to spread within the whole grey matter whereas
ir-SP stayed more close to the initial zone of detection,
i.e., the superficial dorsal horn and up to the dorsal
surface of the cord. Another difference between these
peptides was that the release of ir-SP seemed to be
stimulus-related whereas ir-NKA was also present in
the absence of mechanical stimulation. Persistence and
spread of ir-NKA in cat spinal cord was also observed
when the peptide release was evoked by electrical
stimulation of tibial nerve and by brief noxious me-
chanical stimuli of the toes (Duggan et al. 1990; Hope
et al. 1990b). Recent data suggest that intraspinal
peptidases may account for these differences in the
persistence and spread of ir-SP and ir-NKA (Duggan
et al. 1992: Schaible et al. 1992). Sluka et al. (1992)
have studied SP-li in the spinal cord of the monkey at
different time points after injection of kaolin and car-
rageenan into the knee. The side to side difference was
greater in the lumbar dorsal horn than in the cervical
dorsal horn with a reduction of SP-li in the lumbar

dorsal horn ipsilateral to inflammation at 4 and 6 h
after joint injection. This decrease in SP-li was thought
to result from release of the peptide.

The release studies indicate that ir-SP is predomi-
nantly released from high-threshold afferents which
are sensitized and then respond to innocuous mechani-
cal stimuli such as flexion. Since ir-SP was mainly
released in a stimulus-dependent mode it may have a
role in the stimulus-related processing of nociceptive
information from the inflamed joint. It is unlikely,
however, that ir-SP is critical in the early stages of the
inflammation-evoked hyperexcitability since it was usu-
ally not detected until neuronal hyperexcitability in the
kaolin /carrageenan model was established (see Sec-
tion IIL.C.1). The distribution of ir-NKA within the
spinal cord shows that peripheral stimulation may lead
to release of compounds which persist in the cord a
considerable time beyond the period of stimulation.
The function of ir-NKA is not known but presumably it
may rather have a tonic modulatory than a stimulus-re-
lated effect.

IILE.5.b. Calcitonin gene-related peptide. CGRP-li in
the dorsal horn is mainly if not exclusively located in
central terminals of afferent fibres (Ruda et al. 1986;
Duggan and Weihe 1991). In rats with FCA-induced
polyarthritis the amount of CGRP-li has been deter-
mined in the dorsal root ganglia, the dorsal and ventral
horns by radicimmunoassay of the extracted peptide
15, 26 and 40 days postinoculation (Kuraishi et al.
1989). In the dorsal root ganglia CGRP-li was almost
doubled 15 and 26 days postinoculation but had re-
turned to normal by day 40. By contrast inflammatory
signs (decrease in nociceptive mechanical threshold
and increase in the hind-paw volume) were present at
days 15 and 26-40. These authors were unable, how-
ever, to detect any changes in CGRP-li levels in the
dorsal and ventral homn of the same animals (Kuraishi
et al. 1989). Somewhat different results were found in
another study on polyarthritic rats in which image
analysis was performed on lumbar spinal cord sections
treated with antibodies directed against CGRP (Marlier
et al. 1991). In these experiments CGRP-li was in-
creased by 10-25% over control values in laminae 1
and II between 1 and 2 months postinoculation. It
should be noted, however, that 2 weeks after inocula-
tion CGRP levels were still normal even though clinical
symptoms of arthritis were already evident. In rats with
unilateral FCA-induced inflammation in the carpal
joint CGRP-li levels were also elevated in the ipsilat-
eral dorsal root ganglia C6-7 (+204%, radioim-
munoassay) but not in the contralateral controls 15
days postinoculation (Smith et al. 1992). Whilst these
studies have shown an increase of CGRP-li at chronic
stages of inflammation an increase of the proportion of
dorsal root ganglion cells with CGRP-li has not only
been observed at a chronic stage of a unilateral inflam-



mation at the ankle (20 days) but also at the second
day after inoculation of FCA (Hanesch et al. 1993). In
another study capsaicin-evoked release of ir-CGRP in
dorsal half slices of the lumbar cord was found to be
enhanced in polyarthritic rats (days 15-20 postinocula-
tion) compared to control rats (Nanayama et al. 1989).

In the monkey CGRP-li has been studied in the
spinal cord at several time points during the develop-
ment of an acute kaolin/carrageenan-induced inflam-
mation in the knee. Using a computer assisted quantifi-
cation system a significant decrease of 31.5% in
CGRP-li in the lumbar versus the cervical dorsal horn
was found at 8 h after induction of inflammation but at
no earlier time points suggesting release of ir-CGRP at
a later stage of an acute inflammation (Sluka et al.
1992).

IILE.5.c. Opioid peptides and opioid receptors. Opi-
oid peptides are derived from three large, genetically
distinct precursor peptides, pro-opiomelanocortin,
pro-enkephalin and pro-dynorphin (Borsodi 1991). In
the spinal cord enkephalins (derived from pro-en-
kephalin) and dynorphins (derived from pro-dy-
norphin) have been identified (Borsodi 1991). These
peptides are contained in some intrinsic spinal cord
neurones but other neuronal elements which stain pos-
itive with the appropriate antibodies may be afferent
and descending fibres (Ruda et al. 1986; Duggan and
Weihe 1991). The three main types of opioid receptor,
mu-, delta- and kappa-receptors (Borsodi 1991; Przew-
locki 1991) are present in the spinal cord (Vaught
1991).

IILE.5.c.i. Behavioural studies. A number of be-
havioural studies in the rat employing nociceptive tests
have suggested that a polyarthritis leads to changes in
the antinociceptive effects of opioids and, in some
respects, a different pattern of behavioural effects.
Firstly, in polyarthritic rats the antinociceptive effect of
morphine has been shown to be enhanced compared to
control rats (Kayser and Guilbaud 1981, 1983; Neil et
al. 1986; Millan et al. 1987). This effect is displayed in
Fig. 10 which shows the morphine effects upon the
threshold for vocalization in normal and arthritic rats.
Very low doses of morphine were found to evoke a
paradoxical hyperalgesic effect in similar experiments
(Kayser et al. 1987). These changes in the antinocicep-
tive effect of morphine in the polyarthritic rat were
mainly observed in the paw pressure-vocalization test,
a suprasegmentally integrated test, and not in the paw
withdrawal test, a spinally coordinated reflex (Kayser
and Guilbaud 1990). Supersensitivity to the antinoci-
ceptive effect of morphine was also observed in the
paw pressure withdrawal test in rats with unilateral
chronic inflammation of the paw (Millan et al. 1988).
Secondly, on repeated administration of morphine pol-
yarthritic rats develop tolerance to a greater extent
than do normal animals (Kayser and Guilbaud 1985;
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Fig. 10. Mean curves of morphine effects upon the threshold for
vocalization in normal and polyarthritic rats. All injections were
given intravenously into the tail. The stimulus was pressure applied
to the left hindpaw. The values obtained for each test are expressed
as percentages of the control values before morphine injection
(£ S.E.M.). Discontinued lines illustrate mean curves obtained with
saline. Student’s ¢ test method used for the statistical analysis.
* P <0.05 ** P<0.01; *** P <0.001. (Reproduced from Kayser,
V. and Guilbaud, G., Brain Res., 267 (1983) 131-138, with permis-
sion from the authors and Elsevier Science Publishers BV, Amster-
dam, The Netherlands.)

Kayser et al. 1986a,b) and thirdly, naloxone in ex-
tremely low doses is also antinociceptive in pol-
yarthritic rats (Kayser and Guilbaud 1981).

In some studies specific agonists have been used in
order to identify the receptors responsible for the
antinociceptive effects of opioid peptides in normal
and polyarthritic rats. In the polyarthritic rat Neil et al.
(1986) found a reduction in vocalization after pressure
was applied to the inflamed paw with the mu-agonist
(p-Ala?, N-Me-Phe*, Gly*-ol)-enkephalin (DAMGO)
and the kappa-agonist US0,488H but not with the
delta-agonist DTLET. In these experiments tolerance
developed to both DAMGO and U50,88H during the
course of the experiment. Conflicting data were ob-
tained by Millan et al. (1988) who found that the
antinociceptive effect of US50,488H was attenuated in
paw and tail pressure test in the same arthritic model.
When applied intrathecally DAMGO also produced an
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increase in the level of antinociception in acute car-
rageenan-evoked cutaneous inflammation whereas
US50,488H was only antinociceptive with systemic appli-
cation (Hylden et al. 1991). In summary, there is gen-
eral agreement as to the action of mu-agonists in
arthritic animals but there is conflicting data for ago-
nists acting at delta- and kappa-receptors.

In order to reveal changes in the actions of endoge-
nous opioids specific antagonists have been adminis-
tered in arthritic animals in an attempt to unmask their
physiological effects. In behavioural experiments the
responses to application of mechanical and heat stimuli
to the paw or the tail in the normal rat were un-
changed by the non-selective opioid-antagonists nalox-
one, the delta-antagonist 1CI-154,159 and the kappa-
antagonist MR2266, indicating that there was no
change in nociceptive thresholds. In the polyarthritic
rat, however, the kappa-antagonist MR2266 signifi-
cantly decreased the response thresholds for pressure
applied to the paw and the tail whereas neither nalox-
one nor ICI-154,159 had an effect (Millan et al. 1985,
1987, 1988). None of the antagonists had an effect on
the heat threshold (Millan et al. 1987, 1988). MR2266
and naloxone reduced the mechanical threshold when
mechanical stimuli were applied to the paw in rats with
unilateral chronic paw inflammation although the ef-
fect of naloxone was only seen in the first 24 h and was
not observed when the long-term polyarthritic lesions
developed (Millan et al. 1988). In subsequent experi-
ments Millan and Colpaert (1991) implanted osmotic
minipumps containing naloxone into rats which had a
unilateral chronic inflammation and found that nalox-
one only potentiated hyperalgesia at doses which sup-
pressed the effect of kappa-agonists in addition to
mu-agonists (Millan and Colpaert 1991).

The studies with antagonists suggest that the activity
of agonists at the kappa-receptor undergoes marked
changes whereas endogenous agonists at other recep-
tors are not similarly influenced and the possible use of
kappa-agonists in the therapy of chronic pain has been
alluded to (Shippenberg et al. 1988; Millan and Col-
paert 1991). On the other hand the marked antinoci-
ception of exogenous mu-agonists in polyarthritic rats
should be noted. Presumably these results cannot be
simply explained with activation or inactivation of re-
ceptors. Rather the metabolism of opioid peptides has
to be taken into account. In the polyarthritic rat an
enhancement of the antinociceptive potency of systemi-
cally administered kelatorphan which is an inhibitor of
the enkephalin metabolism has also been found indi-
cating an upregulation of the enkephalinase enzyme in
this situation (Kayser et al. 1989).

HILE.5.c.ii. Upregulation of opioid peptides in the
spinal cord. The systemic application of opioids in
behavioural experiments does not allow conclusions to
be made about the site of action. Evidence is accumu-

lating, however, that some of these changes may be
related to alterations within the spinal cord. In an
electrophysiological study on spinalized polyarthritic
rats naloxone was found to induce a highly significant
increase in the spontaneous firing and the responses to
electrical stimulation of C fibres in dorsal horn neu-
rones suggesting tonic activity of a spinal cord intrinsic
opioid system in this chronic pain model (Lombard and
Besson 1989). Several groups have reported pro-
nounced alterations in the synthesis of spinal endoge-
nous opioid peptides during chronic arthritis and other
types of chronic inflammation. In the poly- and
monoarthritic rat the synthesis of ir-pro-dynorphin in
the lumbosacral spinal cord is markedly increased (Mil-
lan et al. 1985, 1987, 1988; Hollt et al. 1987; Weihe et
al. 1989) and rats showing the greatest mechanical
hyperalgesia in the paw pressure test displayed the
greatest rise in the level of ir-dynorphin (Millan et al.
1985). This activation was illustrated as an intensifica-
tion of the immunohistochemical staining for dynor-
phin and alpha/beta-neo-endorphin. Whereas perikar-
ya were rarely stained in control animals and were
encountered only in laminae 1 and II many strongly
stained perikarya were found in laminae I and II and
also in laminae IV and V in arthritic rats (Weihe et al.
1988, 1989). Stained fibres were also seen throughout
the dorsal and ventral grey matter in normal rats but
during arthritis this staining was much more pro-
nounced. These changes were well localized since bio-
chemical and immunhistochemical changes were bilat-
eral in the polyarthritic rat but unilateral in the
monoarthritic animal (Weihe et al. 1989). A similar
activation of pro-dynorphin synthesis has also been
found in unilateral acute and chronic inflammation of
the hindpaw, with pronounced changes occurring within
the first days (Iadarola et al. 1988a,b,c; Millan et al.
1988; Ruda et al. 1988; Przewlocka et al. 1992). In the
superficial dorsal horn of rats with unilateral paw in-
flammation a higher proportion of ascending neurones
in lamina I and of non-ascending neurones in laminae I
and II were found to be immunoreactive for dynorphin
A1-8 (Nahin et al. 1989).

Whilst marked changes in the synthesis and im-
munocytochemical staining for dynorphin have been
seen, there seems to be a comparatively small but
significant increase in the concentration of opioid pep-
tides derived from pro-enkephalin A in rats with
chronic arthritis. Cesselin et al. (1980, 1984) found an
increase of about 60-80% in the concentration of
ir-Met-enkephalin in the dorsal and ventral halves of
the cervical and lumbar enlargement of the spinal cord.
Similar results were obtained by Millan et al. (1985)
but this change was not correlated with the intensity of
mechanical hyperalgesia. In the monoarthritic rat the
level of ir-Met-enkephalin was elevated (about 50%) in
the segments receiving the afferent input from the



inflamed limbs (Faccini et al. 1984). An increase of the
(pre)pro-enkephalin mRNA was shown in earlier stages
(first days) of a unilateral FCA- (Jadarola et al.
1988a,b,c; Przewlocka et al. 1992) and carrageenan-in-
duced inflammation in the rat hindpaw (Noguchi et al.
1992). By contrast Millan et al. (1988) reported a small
rise of ir-Leu-enkephalin and ir-Met-enkephalin only
at a later stage (5 weeks) of a chronic unilateral FCA-
induced inflammation.

Quite how these changes in peptide expression are
related to function is not clear but it should be noted
that the absolute production and the amount of pep-
tide released are not the only important factors. As
mentioned above, persistence and breakdown are im-
portant as is the concentration of receptors at the
target site (see below). In addition, the increase in the
level of these opioid peptides is not necessarily associ-
ated with an increase in the turnover of the peptide.
Studies on the release of ir-Met-enkephalin from slices
of the lumbar enlargement have shown that increases
in the levels of ir-Met-enkephalin in spinal cord of
polyarthritic rats are associated with a lower fractional
rate constant of the ir-Met-enkephalin release suggest-
ing that the spinal ir-Met-enkephalin turnover is re-
duced in chronically suffering animals (Cesselin et al.
1984). When the intrathecal space was perfused in
normal and polyarthritic rats (4th week) a marked
reduction (—56%) in the spontaneous outflow of ir-
Met-enkephalin was noted in arthritic rats but move-
ments of the legs and raising extracellular potassium in
the intrathecal space still produced a significant in-
creased release. It was concluded that in arthritic rats
the basal activity but not the stimulus-evoked release
of enkephalinergic neurones is reduced (Bourgoin et
al. 1988). By contrast, basal release of ir-Met-enkepha-
lin-Arg8-Gly’-Leu® from spinal cord isolated from rats
with unilateral FCA-induced hindpaw inflammation
was enhanced in the first days after inoculation whereas
the K*-stimulated release was not altered (Przewlocka
et al. 1992). The basal and the K *-stimulated release of
ir-alpha-neoendorphin (derived from pro-dynorphin)
were enhanced (Przewlocka et al. 1992).

IILE.5.c.iii. Binding sites in the spinal cord. Cesselin
et al. (1980) found the total number of binding sites for
naloxone and Leu-enkephalin and receptor affinity to
be unchanged in polyarthritic rats. In another study,
however, there was a rise in the number of mu-recep-
tors and a significant fall in the number of kappa-re-
ceptors in the spinal cord whereas delta-receptors re-
mained unaltered (Millan et al. 1986). By contrast, rats
with unilateral inflammation of the paw showed no
change in the density of mu-, delta- and kappa-binding
sites in the lumbar cord ipsilateral to the inflammation
nor was the laminar pattern changed (Jadarola et al.
1988c; Millan et al. 1988). The concentration of neutral
endopeptidase EC 3.4.24.11., and the number of mu-
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and delta-binding sites in the spinal cords were found
not to be altered in arthritic animals compared to
normal rats (Delay-Goyet et al. 1989). From this result
and the observation that the release of Met-enkepha-
lin-like material is reduced in the arthritic rat (Cesselin
et al. 1984) it has been suggested that the greater
analgesic response of mu-agonists in arthritic animals
is most likely due to a decreased occupation of binding
sites by endogenous enkephalins; in this situation ex-
ogenously administered selective mu-agonists should
produce a better analgesic response (Delay-Goyet et
al. 1989).

IILE.5.d. Somatostatin. SOM-li is contained in affer-
ent fibres and in intrinsic spinal neurones (Ruda et al.
1986; Duggan and Weihe 1991). Changes in the levels
(measured by radioimmunoassay) of ir-SOM-14 and
ir-SOM-28 have been investigated in the dorsal root
ganglia and the spinal cord of the polyarthritic rat. The
content of ir-SOM, especially ir-SOM-14, was found to
be enhanced in the dorsal root ganglia at L4-L6 levels
in the 4th week after inoculation but not at earlier or
later time points (Ohno et al. 1990). This increase was
prevented by chronic administration of the NSAID
sodium diclofenac (Ohno et al. 1990) which reduces
the severity of adjuvant-induced polyarthritis. By con-
trast no change in the levels of ir-SOM was found in
the dorsal root ganglia of rats with unilateral FCA-in-
duced inflammation in the carpal joint 15 days
postinoculation (Smith et al. 1992) and the reasons for
these differences have not been identified. Despite
these increases in the levels of ir-SOM in the dorsal
root ganglia of polyarthritic rats Ohno et al. (1990)
were unable to detect any changes in the levels of
ir-SOM in the spinal cord of these animals.

IIL.E.5.e. Other peptides. In their study on the pol-
yarthritic rat (day 22) Chery-Croze et al. (1985) found
increased cholecystokinin levels in the dorsal half of
the cord (compared to control rats) but no change in
the ventral half, By contrast the staining for VIP was
found not to be altered in the polyarthritic rat com-
pared to controls. Similarly, no differences were re-
ported for the levels of ir-vasopressin and ir-oxytocin in
the lumbosacral spinal cord of polyarthritic rats com-
pared to control rats (Millan et al. 1984). Schoenen et
al. (1985) have, however, reported an enhancement of
FRAP activity in lamina 11 in the polyarthritic rat.

HLE.6. C-fos proteins

Recently the expression of ‘proto-oncogenes’ such
as c-fos and their protein products have been identified
in nerve cells of the spinal cord of animals following
noxious stimulation of peripheral tissues and electrical
stimulation of peripheral nerves (Hunt et al. 1987;
Bullitt 1990). Although the function of these proteins is
not precisely known it is postulated that they are
involved in long-term adaptations in neurones (Hunt et
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al. 1987, Morgan and Curran 1989; Williams et al.
1989).

With regard to nociception in the joint the expres-
sion of c-fos has been studied in the spinal cord of rats.
After injection of mustard oil into the knee joint
Williams et al. (1989) found strong c-fos staining in
spinal segments L2-L.6 which was most intense in lam-
ina I and only weak in lamina V. The expression of
c-fos has also been studied 16 h after implanting urate
crystals close to the ankle joint (this treatment resulted
in an acute inflammatory episode in the ankle and
adjacent areas). C-fos labelled cells were found from
L1 through L6, ipsilateral to the inflamed paw, in
lamina I, the lateral neck of the dorsal horn, at the
base of the dorsal horn, and in laminae VII, VIII and
X (Menetrey et al. 1989). A similar pattern of labelling
was found after injection of Freund’s adjuvant into the
plantar surface of the hindpaw (Menetrey et al. 1989).

1w 2W

In polyarthritic rats c-fos-li in the lumbar enlargement
was found to be correlated with the development of
adjuvant-induced arthritis and hyperalgesia (Abbadie
and Besson 1992). Fig. 11 shows that c-fos-li was absent
at 1 week postinoculation (preclinical stage), moderate
to strong at 2-3 weeks (acute stage of inflammation
with significant hyperalgesia), decreased at 11 weeks
(recovery stage) and back at control levels at 22 weeks
(normalization). Under these conditions most intense
labelling was found in the laminae V and VI of the
deep dorsal and in the ventral horn whereas only few
labelled neurones were identified in the superficial
dorsal horn.

From these data it is clear that there is a widespread
rostrocaudal distribution of neurones in the dorsal and
ventral horn that express c-fos during a localized or
more generalized inflammation. The pattern of the
labelling (superficial dorsal horn vs. deep dorsal and

3w 1w 22w

Fig. 11. Camera lucida drawings showing the rostrocaudal distribution of Fos-li neurones in the lumbar spinal enlargement at different times

postinjection of Freund’s adjuvant into the base of the tail. Five segments, from L2 to L6, and 5 postinjection times: 1 week (1W) 2, 3, 11 and 22

weeks, are represented. Each scheme includes all labelled cells in 3 X 40 xm sections; each dot represents 1 labelled cell. These data show c-fos

that is expressed ‘spontaneously’, i.e., without any intentional stimulation. Control sections showed no Fos-li and are not represented. The

boundaries of the superficial laminae and of the reticular part of the neck of the dorsal horn are outlined for orientation. (Reproduced from

Abbadie, C. and Besson, J.-M., Neuroscience, 48 (1992) 985-993, with permission from the authors and Pergamon Press Ltd, Headington Hill
Hall, Oxford OX3 0BW, UK.)



ventral horns) is obviously dependent on the duration
of inflammation. Although the expression of c-fos (and
other proto-oncogenes) seems to be evoked by damag-
ing stimuli the precise relationship to nociception-asso-
ciated events is still open (which types of neurones
show expression of c-fos?, which are the adequate
stimuli ?) and the functional consequences are still
under investigation. Among other things the expression
of c-fos may be coupled to dynorphin and enkephalin
gene transcription (see Dubner and Ruda 1992).

In summary, a number of transmitters, neuromodu-
lators and receptors seem to be involved in the spinal
cord activity relevant in the processing of nociceptive
input from the joint. Furthermore the presence of an
acute or chronic inflammation in the joint may signifi-
cantly influence levels of transmitters and neuromodu-
lators in the dorsal root ganglia and the spinal cord.
Although many particular aspects are known the cur-
rent knowledge is not sufficient to give a full descrip-
tion of the events in the spinal cord which are associ-
ated with inflammation in the joint. There is evidence
that the excitatory transmitter glutamate plays a role in
the transmission of information from the joint in the
spinal cord and this processing seems to involve NMDA
receptors, at least under inflammatory conditions. Bio-
chemical data suggest an increase of the biosynthesis of
transmitters which are involved in descending inhibi-
tion of the spinal neurones (5-HT, norepinephrine).
The synthesis of some neuropeptides such as ir-SP,
ir-CGRP, ir-dynorphin and ir-enkephalin in the dorsal
root ganglia and /or the spinal cord is also increased,
at least in some stages of inflammation, and intraspinal
release of some neuropeptides in the course of inflam-
mation has been demonstrated. Still the functional
consequences have not been fully elucidated. Finally
the inflammmation leads to the expression of ‘proto-
oncogenes’ in spinal neurones which may regulate,
among other things, the transcription processes in the
synthesis of neuropeptides.

IV. Motor reflexes

Pain in the joint always influences motor perfor-
mance in that extensive movements are avoided and
the position is kept such that pain is minimized. Al-
though this motor behaviour is probably generated at
various supraspinal sites spinal motor reflexes may play
a role as well. The motor reflex effects evoked by joint
afferents have been comprehensively reviewed by Jo-
hansson et al. (1991) and the reader is referred for
details to their recent review article. Motor reflexes
may be considered as a feedback system from the joint
back to the joint since sensory information arising in
joints may influence the motor outflow to those mus-
cles that move and stabilize the joint (Fig. 1). In this
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section data will be summarized which are related to
joint inflammation.

IV A. Reflexes evoked by stimulation of joint afferents

Reflexes in muscles of the limbs (measured by elec-
tromyography) and reflex discharges in motor neurones
can be elicited by electrical stimulation of articular
nerves (Gardner 1950; Eccles and Lundberg 1959a,b;
Holmquist and Lundberg 1961; Hongo et al. 1969;
Klineberg 1971; Fedina and Hultborn 1972; Ramcha-
ran and Wyke 1972; Lundberg et al. 1978; Harrison
and Jankowska 1985; Johansson et al. 1986) or by
activation of receptors in the joint capsule and the joint
ligaments or by pressure applied to, or inflation of the
joint (Andersson and Stener 1959; Ekholm et al. 1960;
Grigg et al. 1978; Shimamura et al. 1984; Baxendale et
al. 1987, 1988). In other experiments the effect of
different joint angle on reflexes evoked by stimulation
of non-articular nerves has been studied (Cohen and
Cohen 1956; Skoglund 1956; Freeman and Wyke 1976b;
Grigg et al. 1978; Baxendale and Ferrell 1981, 1982).
Reflexes evoked by joint afferents are important in
eliciting protective muscle movements, i.e., movements
counteracting hyperflexion, hyperextension, hyperrota-
tion. These potentially noxious movements have marked
effects on alpha-motoneurones whereas under normal
conditions joint afferents only exert weak effects on the
alpha-motoneurones. The application of innocuous
stimuli to the joint, however, leads to considerable
reflex discharges in gamma-motoneurones. Through
this pathway joint afferents may participate in the
regulation of joint stiffness and joint stability during
normal movement (see Johansson et al. 1991). It may
be speculated that the articular group II and the low-
threshold group III units have an important role in the
generation of these reflexes since they are activated by
innocuous movements and many of them exhibit an
immediate increase in their discharges when the joint
is being moved to the extreme of the working range
(see Dorn et al. 1991; Krauspe et al. 1992, and Section
1D).

IV.B. Effects of chemical stimulation and inflammation
on motor reflexes

Several studies have shown that changes in the input
to the motoneurones caused by chemical stimulants
which activate fine afferent fibres or by the induction
of joint inflammation changed the pattern of reflex
responses in the spinal cord. For example, injections of
the C-fibre stimulant, mustard oil into the joint was
shown to produce a pronounced and prolonged in-
crease in the excitability of alpha-motoneurones in
decerebrate spinalized rats as determined by record-
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ings made from the motor nerves supplying the biceps
femoris and semitendinosus muscles. Although the mo-
toneurones did not exhibit direct reflex discharges fol-
lowing mustard oil they showed increased responses to
ipsi- and contralateral mechanical stimuli applied to
the hindlimb (Woolf and Wall 1986). Similar effects
were obtained when a kaolin/carrageenan-evoked
arthritis developed in the knee joint of the cat. In the
decerebrated low spinal cat electromyographic record-
ings of the flexion reflex elicited by electrical stimula-
tion of the common peroneal nerve revealed an in-
crease in the reflex intensity with a time course that
matched the development of the inflammatory process
as assessed by monitoring the intra-articular tempera-
ture. In addition changes in the pattern of reflex re-
sponses were observed during development of inflam-
mation. The most obvious of these was that flexion
evoked greater activity in knee flexor units than exten-
sion when the joint was inflamed whereas extension
was a more powerful stimulus in normal joints. These
changes were suggested to be of afferent origin since
local anaesthesia of the joint reversed the inflamma-
tion-induced changes (Ferrell et al. 1988).

A more complex result was obtained when the reflex
discharges were monitored in single identified alpha-
and gamma-motoneurones of the biceps semitendi-
nosus, during development of a kaolin/carrageenan-in-
duced inflammation of the knee joint in the spinalized
cat. In these experiments most of the gamma-
motoneurones were excited when the normal knee
joint was flexed. During the development of joint in-
flammation, however, about two-thirds of these neu-
rones showed increased reflex discharges evoked by the
same stimulus whilst the other third of the neurones to
the same muscle developed inhibitory reflexes (He et
al. 1988). The time course of both excitatory and in-
hibitory effects was similar following the time course of
the sensitization of joint afferents and the development
of hyperexcitability of spinal neurones with afferent
input from the knee. The alpha-motoneurones showed
similar but less pronounced changes (He et al. 1988).

In summary these results indicate that there is an
increase in the flexion reflex during long-lasting nox-
ious stimulation of the knee which is consistent with
the nociceptive flexion reflex concept. A flexion reflex
would, however, keep the joint in a position that would
significantly activate sensitized joint afferents and thus
produce a vicious circle of afferent activation and re-
flex motoneurone discharge. Injured or inflamed joints
are, however, normally kept in mid position and move-
ments are prevented if possible. In this respect the
generation of the inhibitory reflex response (He et al.
1988) may be relevant since it would counteract the
excitatory reflex discharge in other motoneurones and
thus modify the stereotype flexion response in such a
way that the joint can now be kept at a midrange

position. In midrange position the nociceptive joint
afferents are less activated when joints are inflamed.

V. Sympathetic reflexes
V.A. The sympathetic innervation of joints

Earlier we discussed the efferent functions of affer-
ent nerve fibres supplying joints, and efferent motor
pathways also influence nociceptive information com-
ing from joints by regulating joint position. As with all
structures the joint also receives efferent innervation
from sympathetic fibres. Studies using axonally trans-
ported HRP have shown that big joints are supplied by
efferent fibres arising from several sympathetic ganglia.
In the rat the temporomandibular joint receives sympa-
thetic fibres from the ipsilateral superior cervical and
stellate ganglia (Widenfalk and Wiberg 1990), the el-
bow joint from the stellate ganglion and the T2-T4
ganglia of the ipsilateral sympathetic trunk (Widenfalk
et al. 1988). The knee joint of the cat is supplied by
sympathetic fibres from the paravertebral ganglia [4-
L6 of the ipsilateral trunk (Heppelmann and Schaible
1990) and the knee joint in the monkey receives fibres
from the sympathetic ganglia L3-S3 (Wiberg and
Widenfalk 1991). Functionally the sympathetic fibres
control the vascular tone in articular vessels since
blood flow was found to be increased after elimination
of the sympathetic innervation and was decreased dur-
ing electrical stimulation of joint nerves (Cobbold and
Lewis 1956; Sato and Schaible 1987; Ferrell et al.
1990). Concomitant with reduction in blood flow the
partial pressure of oxygen in the synovial fluid of the
rabbit knee joint was decreased during electrical stimu-
lation of PAN (Ferrell and Najafipour 1992). Pharma-
cological studies performed using noradrenaline and
appropriate antagonists have shown that these vaso-
constrictor effects are probably mediated through al-
pha, and alpha, (mainly alpha,) receptors but not by
beta-receptors (Ferrell and Khoshbaton 1989, 1990).

V.B. Discharges in sympathetic units of joint nerves

Many postganglionic fibres in the joint nerve of cats
knee are tonically active producing tonic vasoconstric-
tion (Sato and Schaible 1987). They seem to exhibit a
pattern of reflexes which is similar to that which has
been observed in vasoconstrictor units of the skeletal
muscle (Jinig 1985). It has been shown, for example,
that (1) tonic activity exhibits fluctuations which are
related to the inhibitory effect of baroreceptors, and
(2) excitatory reflexes are evoked by noxious mechani-
cal stimuli such as noxious movements in the knee and
intra-articular injections of prostaglandins whereas in-



nocuous stimuli are ineffective (Sato and Schaible
1987).

V.C. Sympathetic activity during inflammation

In several sympathetic subsystems changes in effer-
ent activity have been observed during the develop-
ment of acute inflammation in joints. In the anaes-
thetized cat the heart rate and the sympathetic activity
in cardiac postganglionic sympathetic neurones were
found to increase during movements of the inflamed
knee within the normal working range whereas noxious
movements were required to elicit this reflex in normal
animals (Sato et al. 1985, 1987). Increased reflex activ-
ity has also been described for the somatoadrenal
reflexes (sympathetic adrenal nerve activity and adrenal
catecholamine secretion) during joint inflammation
(Sato et al. 1986). Surprisingly increases in the reflex
discharges to the joint itself could not be found. In cats
with normal and inflamed knee joints only noxious
rotation of the knee against the resistance of the knee
joint structures elicited a significant increase in the
discharges of postganglionic efferent fibres in the joint
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nerve whereas innocuous movements in the knee did
not produce any consistent effect (Sato and Schaible
1987). It could be postulated that the reflex discharges
to the joint itself were ‘relatively inhibited’ during
inflammation since there are significant increases in
activity in other sympathetic subsystems. Insufficient
data are available, however, on inflammation-induced
changes in the sympathetic discharges in the efferent
fibres to the joint to make firm statements at this time.

V.D. Sympathetic innervation and expression of inflam-
mation

In a series of experiments a polyarthritis was in-
duced in the rat by subdermal injection of M. bu-
tyricum into the tail, and additional pharmacological
interventions were performed in order to investigate
whether the activity of the nervous system would influ-
ence the progression and expression of the disease
(Levine et al. 1986a, 1987; Coderre et al. 1990). Radio-
graphic examination of the joints provided evidence
that the action of the sympathetic nervous system en-
hanced the severity of the arthritis since (1) treatment

Post onset Not
treated

Treatment period

Fig. 12. Mean day-28 radiographic severity scores (+ SEM) of adjuvant arthritic rats that were either untreated (open bar) or treated with
reserpine (grey bars) or butoxamine (black bars) over treatment periods extending from (i) days —2 to 28 (pre- and postonset), (ii) either days —2
to 3 (reserpine) or days — 2 to 8 (butoxamine) (preonset), or (iii) the first day clinical arthritis was detected to day 28 (postonset). The radiographs
were scored for each hindpaw according to the 0-3 grading scale of Ackerman et al. (1979) taking into account soft-tissue swelling, decreased
bone density, narrowing of the joint space, destruction of bone and formation of periosteal new bone. Chi-squared or Fisher's exact test
comparisons were performed following a significant Kruskal-Wallis test statistic. Significant differences from the untreated group are indicated:
* P <0.05 ** P <0.01). (Reproduced from Levine, J.D., Coderre, T.J., Helms, C. and Basbaum, AL, Proc. Natl. Acad. Sci. USA, 85 (1988)
4553-4556, with permission from the authors.)
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with reserpine or guanethidine (chemical sympathec-
tomy) reduced the joint injury in the hindlimbs (Levine
et al. 1986a, see Table II), (2) pretreatment with
beta,-adrenergic receptor antagonists retarded the dis-
ease onset and reduced the severity of the joint injury;
this is shown in Fig. 12 which displays the inhibition of
joint injury by treatment with reserpine and the selec-
tive beta ,-adrenergic antagonist butoxamine (given pre
and/or postonset), and (3) adrenal medullectomy sig-
nificantly reduced articular lesions suggesting adrenal
medulla-derived epinephrine as the endogenous medi-
ator involved (Coderre et al. 1990). As a mechanism
the authors postulated that beta,-antagonists were re-
ducing the release of compounds from sympathetic
postganglionic nerve terminals and also acted on cells
of the immune system. In support of this they were
unable to suppress symptoms of an arthritic lesion with
beta,-, alpha;- or alpha,-antagonists. The effect of
epinephrine on the expression of joint injury was found,
however, to be dose-dependent since only low doses of
the compound enhanced joint injury whereas high doses
decreased the severity of arthritic symptoms (Coderre
et al. 1991). The reduction of arthritic symptoms in-
duced by high doses was attributed to an action of
epinephrine at the alpha,-adrenergic receptor since it
was antagonized by yohimbine and mimicked by the
alpha,-agonist clonidine (Coderre et al. 1991).

An aggravation of inflammatory symptoms by the
sympathetic nervous system has not, however, been
observed in other studies. Lam and Ferrell (1989a)
were not able to induce a reduction in the severity (as
judged by plasma extravasation) of the carrageenan-
evoked acute arthritis in rat knees which had been
pretreated for 3 days with reserpine to deplete sympa-
thetic nerve endings of catecholamines. In the rat paw
the neurogenic mustard oil inflammation and the non-
neurogenic carrageenan oedema were not impaired
after short-term chemical sympathectomy which re-
sulted in a large (but incomplete) depletion of nora-
drenaline (Donnerer et al. 1991). It is not clear whether
the time course of the inflammation (acute vs. chronic)
or other factors (mode of induction of inflammation,
etc.) are responsible for these differences.

There is also some evidence from studies in patients
with rheumatoid arthritis that the sympathetic nervous
system may control the severity of arthritic symptoms.
Patients that underwent regional sympathetic blockade
using guanethidine over 14 days described less pain
and an increase in the pinch strength. The grip strength,
tenderness and morning stiffness, however, were not
significantly improved by guanethidine (Levine et al.
1986b). Another suggestion that the sympathetic ner-
vous system may contribute to the severity of arthritic
pain is the observation that there exist bilateral tissue
abnormalities which include an inflammatory compo-
nent in the joints of patients suffering from reflex

sympathetic dystrophy, a condition where the efferent
sympathetic outflow may be altered (Kozin et al. 1976).

V.E. Sympathetic innervation and plasma extravasation

Plasma extravasation results from the action of sev-
eral chemical mediators released during the inflamma-
tory process and allows rapid infiltration of immuno-
competent cells into the damaged site. Evidence has
been provided that the bradykinin-evoked plasma ex-
travasation into the joint involves sympathetic postgan-
glionic neurones since sympathectomy reduced plasma
extravasation evoked by infusion of bradykinin into the
knee joint of the rat whereas pretreatment with cap-
saicin did not attenuate this reaction (Coderre et al.
1989). The bradykinin-evoked plasma extravasation also
seems to involve an action of polymorphonuclear
leukocytes since depletion of these cells has been shown
to reduce the bradykinin-evoked plasma extravasation
(Bjerknes et al. 1991). It was proposed that bradykinin
evoked the release of PGE, from sympathetic termi-
nals (Gonzales et al. 1989) and thus activated polymor-
phonuclear leukocytes via an undefined mechanism
that requires the sympathetic terminal (Bjerknes et al.
1991). Recently an interaction of bradykinin with the
sympathetic terminals was shown via purinergic mecha-
nisms since (1) ATP and adenosine were assumed to be
co-transmitters with norepinephrine in the sympathetic
postganglionic neurone and (2) the co-infusion of ATP
or the adenosine A ,-receptor agonist 2-[4-(2-carboxy-
ethylphenylethylamino]-5°'-N-ethylcarboxamidoadeno-
sine with bradykinin was shown to enhance the plasma
extravasation (Green et al. 1991). On the other hand
the application of ATP or adenosine reduced the
severity of the radiographically assessed joint injury.
On grounds of the opposing purinergic effects on
plasma extravasation and joint injury it was suggested
that e¢nhanced plasma extravasation protects against
joint injury (Green et al. 1991).

In summary the joints are supplied by efferent sym-
pathetic nerve fibres which exhibit ongoing and reflex
discharges in order to control the vascular tone (vaso-
constrictor neurones). Several sympathetic subsystems
such as the cardiac postganglionic sympathetic neu-
rones and the sympathetic adrenal system show reflex
discharges when noxious stimuli are applied to the
joint and during acute inflammation of the joint this
reflex activity seems to be increased. The sympathetic
nervous system seems to contribute to the expression
of the inflammatory lesions in the polyarthritic model
since the reduction of sympathetic activity and /or the
blockade of the postsynaptic effects by antagonists
partially reduced the severity of the lesions. In acute
experimental inflammation of the joint such an effect
has not been found.



V1. Concluding remarks

The aim of neurobiological studies in pain research
is to elucidate mechanisms of nociception and pain at
acute and chronic stages of painful conditions and
disorders. It is hoped that the understanding of the
mechanisms involved in the sensitization of joint affer-
ents, in the processing of neural information in the
central nervous system and in processes of neuroplas-
ticity in the peripheral and central nervous system will
systematically reveal aspects of the pathways involved
which can eventually be used for therapeutic interven-
tion. Using the animal models of inflammation de-
scribed in this review it has been possible to examine
several aspects of the response of the nervous system
to the development of an inflammatory lesion and
these results demonstrate major patterns of reaction in
the nervous system in the course of inflammation. This
review did not address supraspinal mechanisms of no-
ciception in joints although considerable information is
available on neurones with joint input in thalamus and
cortex. The reader is referred to the extensive work of
Guilbaud and co-workers (see Guilbaud 1988). It should
be noted that the studies investigating the function of
the nervous system in arthritic conditions are only at
an early stage although a large amount of data is
already present. Major deficits in the understanding
and contradictory results have been pointed out. Many
other observations and conclusions may be challenged
in future studies.

The authors believe that the continued use of ani-
mal models of inflammation in the joint will increase
our understanding of the mechanisms involved in the
signalling of arthritic pain. Still it has to be kept in
mind that these animal models are only an approxima-
tion to human arthritic diseases and they may not take
into account more specific factors depending on the
particular aetiology and pathogenesis of the arthritis.
The experimental work in animals, however, has pro-
vided many data on factors and mediators possibly
involved and these could and should lead to related
studies in humans. It could be asked, for example
whether in different types and stages of arthritis
(aetiology, pathogenesis, duration, etc.) particular in-
flammatory mediators in the periphery are predomi-
nant and whether under clinically relevant conditions
only subsets and proportions of afferent fibres are
activated and /or sensitized. In experimental inflamma-
tion at least, there is some evidence that inflammatory
mediators may be preferentially produced and/or re-
leased at some stages of inflammation only (see Owen
1987; Salmon and Higgs 1987). The afferent fibres
which are activated by the inflammatory mediators
present may then determine which transmitters and
neuromodulators are preferentially involved in the pro-
cessing in the spinal cord.

43

Finally laboratory research should provide the clini-
cian with options that can be used in the treatment of
different types of joint pain in patients. Some antago-
nists acting at membrane receptors specific for many of
the inflammatory mediators released in the periphery
during inflammation are already under investigation as
are antagonists working in different synaptic pathways
in the spinal cord. The neurobiological data summa-
rized in this review have, however, already shown that
different inflammatory mediators, neurotransmitters
and neuromodulators may be involved in the complex
response of the nervous system and some may not have
been even identified. It seems unlikely, therefore, that
one standard approach or a single drug will be suffi-
cient to suppress all types of pain in joints. There is
hope, however, that experimental and clinical research
will be able to define patterns of effective treatment
for different types of joint pain.
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