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Metabolic Myopathies
By Mark A. Tarnopolsky, MD, PhD, FRCP
ABSTRACT
PURPOSE OF REVIEW: Metabolic myopathies are disorders that affect skeletal
muscle substrate oxidation. Although some drugs and hormones can affect
metabolism in skeletal muscle, this review will focus on the genetic
metabolic myopathies.

RECENT FINDINGS: Impairments in glycogenolysis/glycolysis (glycogen storage
disease), fatty acid transport/oxidation (fatty acid oxidation defects), and
mitochondrial metabolism (mitochondrial myopathies) represent most
metabolic myopathies; however, they often overlap clinically with
structural genetic myopathies, referred to as pseudometabolic
myopathies. Although metabolic myopathies can present in the neonatal
period with hypotonia, hypoglycemia, and encephalopathy, most cases
present clinically in children or young adults with exercise intolerance,
rhabdomyolysis, and weakness. In general, the glycogen storage diseases
manifest during brief bouts of high-intensity exercise; in contrast, fatty
acid oxidation defects and mitochondrial myopathies usually manifest
during longer-duration endurance-type activities, often with fasting or
other metabolic stressors (eg, surgery, fever). The neurologic examination
is often normal between events (except in the pseudometabolic
myopathies) and evaluation requires one or more of the following tests:
exercise stress testing, blood (eg, creatine kinase, acylcarnitine profile,
lactate, amino acids), urine (eg, organic acids, myoglobin), muscle biopsy
(eg, histology, ultrastructure, enzyme testing), and targeted (specific gene)
or untargeted (myopathy panels) genetic tests.

SUMMARY: Definitive identification of a specific metabolic myopathy often
leads to specific interventions, including lifestyle, exercise, and nutritional
modifications; cofactor treatments; accurate genetic counseling;
avoidance of specific triggers; and rapid treatment of rhabdomyolysis.
INTRODUCTION

he metabolic myopathies are genetic disorders that impact the
enzymes and other proteins (eg, transporters, translocases) involved

in the intermediary metabolism of glucose and free fatty acids in
skeletal muscle. Typically, patients with metabolic myopathies
present with muscle pains and cramps during exercise, with some

progressing to rhabdomyolysis (the breakdown of skeletal muscle leading to
a creatine kinase [CK] rise of greater than 10 times the upper limit of normal).
This article focuses on the metabolic myopathies associated with glycogen
storage diseases, fatty acid oxidation defects, and mitochondrial myopathies
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(TABLE 10-1);9 however, several other metabolic myopathy mimics (ie,
pseudometabolic myopathies) and some acquired causes of exercise-induced
rhabdomyolysis (ie, statins, vitamin D deficiency, hypothyroidism) will
be discussed.

PSEUDOMETABOLIC MYOPATHIES
Pseudometabolic myopathies are structural myopathies that mimic metabolic
myopathies by initially presenting as exercise-induced rhabdomyolysis. Although
energy depletion during exercise is a trigger, these disorders are structural or
calcium dysregulation myopathies and are not directly involved in substrate
metabolism per se.1-3 The most common disorders with a pseudometabolic
presentation are the limb-girdle muscular dystrophies (TTN, SGCA, SGCB,
SGCD, ANO5, and DYS gene mutations) and Becker muscular dystrophy (DMD
gene mutation).4,5 Rhabdomyolysis in these disorders is likely due to exercise-
induced sarcolemmal damage, excessive calcium influx, or both. Even before fixed
proximal weakness occurs, a clue to their existence is a CK elevation persisting for
more than 10 days following a bout of rhabdomyolysis (CASE 10-1).

In contrast, hyperCKemia is not seen with the excitation-contraction coupling
associated mutations (RYR1 and CACNA1S) seen in malignant hyperthermia
susceptibility myopathies. Exercise-induced rhabdomyolysis with autosomal
dominant mutations in the RYR1 or CACNA1S gene has been reported.4,6 These
proteins link depolarization of the transverse tubule (dihydropyridine receptor,
CACNA1S gene) to calcium release from the sarcoplasmic reticulum (ryanodine
receptor, RYR1 gene) with mutations leading to isolated malignant
hyperthermia, core myopathy, or exercise-induced rhabdomyolysis.7 A
correlation between RYR1 mutation phenotype and rhabdomyolysis does not
seem to exist, although biallelic RYR1 variants are usually associated with a more
severe fixed weakness phenotype/core myopathy.7 Practically, patients with
malignant hyperthermia should avoid exercise in the heat or when dehydrated
and should wear a medical alert bracelet.

In addition, it is important to recognize that several acquired disorders can
lead to exercise-induced rhabdomyolysis. Statins are one of the most commonly
prescribed medications in the world and are a well-known trigger of
TABLE 10-1Metabolic Myopathies in Skeletal Muscle

Category Examples

Glycogen storage
disease

McArdle (GSD5, myophosphorylase deficiency); Tarui (GSD7, phosphofructokinase deficiency);
GSD9 (phosphorylase b kinase deficiency); GSD10 (phosphoglycerate mutase deficiency); GSD11
(lactate dehydrogenase deficiency); GSD12 (aldolase A deficiency); GSD13 (β-enolase deficiency);
phosphoglucomutase deficiency; phosphoglycerate kinase 1 deficiency

Fatty acid oxidation
defect

Carnitine palmitoyl transferase 2 deficiency, trifunctional protein deficiency, very-long-chain
acyl-CoA dehydrogenase deficiency

Mitochondrial
myopathy

mtDNA mutations (MELAS, cytochrome b, cytochrome c oxidase), nuclear DNA mutations (POLG,
TK2)

CoA = coenzyme A; mtDNA = mitochondrial DNA; MELAS = mitochondrial encephalomyopathy lactic acidosis and strokelike episodes;
POLG = polymerase gamma; TK2 = thymidine kinase.
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rhabdomyolysis; they can even trigger an autoimmune process mediated by
anti–3-hydroxy-3-methylglutaryl coenzyme A reductase antibodies.8-10 Statins
result in a higher CK response to standardized exercise,11,12 can lead to myalgia in
approximately 10% of individuals, and may unmask an underlying genetic
metabolic myopathy.13

Vitamin D deficiency (<30 nmol/L) can lead to exercise intolerance,
rhabdomyolysis, and persistent hyperCKemia, with a good clinical and
laboratory response to vitamin D supplementation. A reduction in or resolution
of statin-associated myalgia was reported in vitamin D–deficient patients
following supplementation.14-18 Consequently, it is reasonable to measure
vitamin D levels in all cases of exertional rhabdomyolysis or statin-associated
myalgia/myopathy and replace them to achieve sufficient levels
(typically >75 nmol/L).

Hypothyroidism can lead to a fixed myopathy with hyperCKemia19,20 and
weakness,21 but predisposes to exertional rhabdomyolysis.22-25 Hypothyroidism
can lead to mitochondrial dysfunction and carnitine depletion,26 which likely
explains the relationship to exercise-induced rhabdomyolysis. Although less
common, hyperthyroidism can also lead to rhabdomyolysis.27-29 It is therefore
reasonable to check plasma thyroid-stimulating hormone (TSH) and thyroxine
levels in cases of exertional rhabdomyolysis.

BRIEF OVERVIEW OF SKELETAL MUSCLE METABOLISM
At the onset of exercise, an immediate drop in adenosine triphosphate (ATP)
occurs; this leads to an increased flux through the adenylate kinase (AK) enzyme
A 23-year-old woman presented to the emergency department with
rhabdomyolysis following a 30-minute spin class. Her creatine kinase
(CK) peaked at 56,000 U/L (normal <220 U/L) during 2 days of in-hospital
IV fluids, and she was discharged home with a requisition to measure CK
2 weeks later. The CK 2 weeks later was still at 1200 U/L and remained at
1100 U/L 4 weeks after the initial event.

She was referred to the neuromuscular clinic as her CK did not
normalize. Her neurologic examination was normal except for
hypertrophic calf muscles. A dystrophin genetic test for deletions and
duplications was normal, her DMD gene was sequenced, and a known
pathogenic stop codon at c.6118-3C>A in IVS 42 was found.

This is a typical case of a pseudometabolic myopathy and provided the
patient with an accurate diagnosis of manifesting carrier state for
Duchenne muscular dystrophy and allowed for appropriate genetic
counseling given that she was engaged and planning a family.
Echocardiogram was normal, but echocardiography was recommended
every 5 years or if she developed any cardiac symptoms. The patient was
able to slowly work up to cardiovascular exercise four times a week for 30
to 45 minutes, with no further rise of CK and no further bouts of
rhabdomyolysis.

DECEMBER 2022
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KEY POINTS

● Metabolic and
pseudometabolic disorders
present during or following
some form of exercise/
physical activity and with
generalized “tiredness” or
daily fatigue.

● Metabolic myopathies
present with muscle pains
and/or cramps during
exercise with some patients
progressing to
rhabdomyolysis (the
breakdown of skeletal
muscle leading to a creatine
kinase rise of greater than 10
times the upper limit of
normal).

● Severe vitamin D
deficiency can lead to
hyperCKemia and/or
rhabdomyolysis.

● Common drugs such as
statins and common
disorders such as vitamin D
deficiency and
hypothyroidism can
lower the threshold for
rhabdomyolysis in patients
with inborn errors of
metabolism and can
even rarely lead to
rhabdomyolysis in otherwise
healthy individuals.

D
ow

nloaded from
 http://journals.lw

w
.com

/continuum
 by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
1y0abggQ

Z
X

dgG
j2M

w
lZ

LeI=
 on 05/07/2023
(ADP + ADP > AK > ATP + AMP), which is maintained by the adenosine
monophosphate deaminase 1 (AMPD1) pathway. The AMPD1 enzyme catalyzes
the deamination of adenosinemonophosphate (AMP) to inosinemonophosphate
which, after several enzymatic steps, leads to the conversion of xanthine to uric
acid. This pathway is active in muscle contraction in healthy people but is
enhanced in those with glycogen storage diseases and can lead to gout through
increased uric acid production (myogenic hyperuricemia).30

Traditionally, myoadenylate deaminase deficiency was considered to be a
metabolic myopathy31,32; however, the AMPD1 enzyme is not directly involved
in substrate metabolism and its role inmetabolic myopathies has been called into
question for several reasons: (1) the prevalence of the most commonly reported
“pathogenic” stop gain variant in AMPD1 (c.34C>T;p.Gln12Ter) was present in
8.7% of a random sample of 282,334 healthy people (gnomad.broadinstitute.org/
gene/ENSG00000116748?dataset=gnomad_r2_1) with approximately 2% being
homozygous; (2) muscle blood flow is increased with no significant power
reduction in skeletal muscle33; (3) homozygous patients who are AMPD1
deficient do not have exercise impairment or any of the predicted deleterious
metabolic consequences in skeletal muscle.34 Thus, AMPD1 deficiency is not a
metabolic myopathy and humans appear to compensate well for complete
AMPD1 deficiency.

The creatine-phosphocreatine system is also activated at the onset of exercise,
and adenosine diphosphate (ADP) is rephosphorylated by phosphocreatine to
produce ATP and free creatine (Cr) via the cytosolic CK enzyme. A proton (H+)
is also part of the reaction (ADP + PCr + H+ > CK > ATP + Cr) and this reaction is
driven by the H+ produced by anaerobic glycolysis and glycogenolysis. Skeletal
muscle phosphocreatine stores are depleted after approximately 10 seconds of
muscle contraction and are restored about 2 minutes after stopping exercise by
mitochondrially derived ATP. The activation of the creatine-phosphocreatine
system is also important in stimulating mitochondrial respiration. Genetic
defects occur in the creatine-phosphocreatine system, including creatine
synthesis defects (eg, arginine:glycine aminotransferase deficiency)35 and
creatine transporter defects36; however, the impact on exercise is unclear as these
disorders lead to severe infantile and childhood encephalopathic symptoms.

At the onset of exercise, glycogenolysis and glycolysis are activated and
[lactate- + H +] are formed by lactate dehydrogenase. After the first few minutes
of muscle contraction, an increase in aerobic respiration occurs through the
tricarboxylic acid (TCA) cycle and themitochondria. The generation of pyruvate
increases the flux of acetyl coenzyme A (CoA) into the TCA cycle via the
pyruvate dehydrogenase pathway to form citrate and increase TCA cycle flux/
content via anaplerosis. Reducing equivalents (NADH + H+ and FADH2) from
the TCA cycle and fatty acid β-oxidation enter themitochondria at complex I and
II, respectively, and drive protons to the intermembrane space and build up the
protonmotive force. The electrons from the oxidation of NADH+H+ and FADH2

are used to reduce molecular oxygen to water at complex IV. The proton motive
force is used to drive ATP synthesis at complex V.

Exercise-mediated substrate fuel selection is determined by a number of
factors, including exercise intensity and duration, training status, habitual
dietary intake, and biological sex. Aerobic exercise intensity is usually measured
as a percentage of the maximal oxygen consumption (VO2max). Most people will
oxidize free fatty acids at exercise intensities less than 50% VO2max, with the
CONTINUUMJOURNAL.COM 1755
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TABLE 10-2

History

Rhabdomyolysis/pigmenturia

Myalgia with endurance sports

Shortness of breath with endur

Myalgia/cramps with power/sp

Rhabdomyolysis triggered by fa
superimposed illness

Gout/myogenic hyperuricemia

Nausea/vomiting with exercise

Multiple system involvement

Family history: X-linked

Family history: maternal

Family history: autosomal reces
consanguinity

mtDNA = mitochondrial DNA.
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carbohydrate contribution increasing at higher exercise intensities and free fatty
acids being predominant with longer-duration endurance exercise.37 Women
oxidize proportionately more lipid at any relative exercise intensity as compared
to men.38-40

The main source of carbohydrates during exercise is intramuscular glycogen
and muscle glycogen stores, and mitochondrial and free fatty acid metabolic
enzymes are higher following endurance exercise training.38,41,42 In addition, the
depletion of glycogen during the same absolute exercise intensity is less than
after endurance exercise training.39 Muscle glycogen can also be manipulated by
diet, with the short-term (3-day) consumption of a high-carbohydrate diet
resulting in a significant increase in muscle glycogen,43,44 especially in men.45

GENERAL CLINICAL APPROACH TO THE PATIENT WITH
EXERTIONAL RHABDOMYOLYSIS
The history is the most important aspect of the assessment of the patient
presenting with exercise-induced rhabdomyolysis. Most patients with a
metabolic myopathy will have symptoms that were apparent in childhood with
comments such as, “the worst athlete in the class” being common. Obtaining a
family history is important and a history of consanguinity increases the
likelihood of metabolic myopathy. A childhood history of myalgia or
pigmenturia or encephalopathy with superimposed illness or fever raises
suspicion for a fatty acid oxidation defect or mitochondrial myopathy. Glycogen
storage diseases usually present with higher-intensity exercise or at the onset of
exercise initiation, while fatty acid oxidation defects present with
Features From the History Suggesting Specific Metabolic Myopathies

Disorders

Glycogen storage diseases, fatty acid oxidation defects, mitochondrial

Fatty acid oxidation defects, mitochondrial

ance sports Mitochondrial mainly but others can report this symptom

rint sports Glycogen storage disease

sting or Fatty acid oxidation defect, mitochondrial

Glycogen storage disease (mainly GSD5 and GSD7)

Mitochondrial and GSD7

Mitochondrial

Phosphorylase b kinase deficiency, phosphoglycerate kinase 1 deficiency

Mitochondrial (mtDNA only)

sive/ Fatty acid oxidation defects, most glycogen storage diseases, non-mtDNA
mitochondrial disease

DECEMBER 2022
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KEY POINTS

● Most of the metabolic
myopathies will have some
symptoms present in
childhood but often the
compensatory strategies
can mask the earlier
presentation.

● The history is a critical
part of the workup in a
patient presenting with
rhabdomyolysis, with a
lifelong history of exercise
intolerance and recurrent
rhabdomyolysis (even if
induced by fever or other
metabolic insult) being
the two most common
predictors of an underlying
genetic metabolic
myopathy/inborn error of
metabolism.

● All patients with
rhabdomyolysis require a
complete neurologic
examination.
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longer-duration exercise often after fasting or other superimposed metabolic
stressors. Mitochondrial myopathies often manifest symptoms during
longer-duration activity or during physical activity performed under additional
metabolic stress. Another key to a mitochondrial defect is a history of other
associated features by history or examination (eg, hypoacusis, ptosis, optic
atrophy, epilepsy, ataxia, cardiomyopathy, type 2 diabetes).

Patients with a history of recurrent rhabdomyolysis are more likely to have an
underlying metabolic myopathy or pseudometabolic myopathy and require
further investigation. The most common reason for exertion rhabdomyolysis is
unaccustomed exercise including forced exercise situations, such as military or
police academy recruitment or starting a new exercise program. A common
scenario is an individual who was an athlete and takes years to decades away
from formal exercise and then goes back to an exercise program. A huge
interindividual variability exists in the susceptibility to rhabdomyolysis even
among those without a genetic metabolic or pseudometabolic myopathy. It is
important to note that all individuals, including those with metabolic myopathy,
can adapt to exercise training if done carefully and progressively.

Several other scenarios can occur where the threshold for rhabdomyolysis is
reduced, including dehydration, superimposed flulike illness (especially with
fever), high heat and humidity, prolonged fasting, hypothyroidism or
hyperthyroidism, and severe vitamin D deficiency. It is important to follow the
serum CK activity until it shows a normalization trend. Renal function
monitoring is important, as acute tubular necrosis is the most ominous outcome
of rhabdomyolysis. Follow-up blood work is recommended to ensure that CK
normalizes, and an acylcarnitine determination is usually recommended upon
initial presentation to screen for fatty acid oxidation defects (see Fatty Acid
Oxidation Defects section). Every patient should have a complete neurologic
examination, and for those who do not show normalization of serum CK activity
an EMG and nerve conduction study is recommended. Patients who remain very
active can have a low-grade CK elevation, and clinicians should consider a
monitoring period of up to 7 days to see if the CK normalizes. Some patients can
have nonpathologic chronic CK elevations of up to 1000 U/L; if the neurologic
examination is normal and the patient is otherwise healthy, no additional
evaluation is needed.

DISORDERS OF GLYCOLYSIS/GLYCOGENOLYSIS (GLYCOGEN
STORAGE DISEASES)
The first metabolic myopathy to be described was named McArdle disease, after
the senior author of the paper, which described a man with exercise-induced
cramps.46 This glycogen storage disease, also called GSD5, is caused by a
mutation in the myophosphorylase gene (PYGM). Several other glycogen
storage diseases were described before McArdle disease, but they mainly affect
hepatic metabolism (ie, GSD1, GSD3, and GSD4) or are now considered to be
lysosomal storage diseases (GSD2, Pompe disease) and do not impact energy
delivery during exercise.47 Many enzymes in the glycolytic and glycogenolytic
pathways are associated with metabolic myopathies (TABLE 10-2).

All glycogen storage diseases show autosomal recessive inheritance, except for
phosphorylase b kinase deficiency (GSD9) and phosphoglycerate kinase 1
deficiency (X-linked recessive inheritance). These are all rare to ultrarare
disorders, with McArdle disease being the most common metabolic myopathy
CONTINUUMJOURNAL.COM 1757

Copyright © American Academy of Neurology. Unauthorized reproduction of this article is prohibited.



CASE 10-2

COMMENT

METABOLIC MYOPATHIES

1758

Copyright © Ame

D
ow

nloaded from
 http://journals.lw

w
.com

/continuum
 by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
1y0abggQ

Z
X

dgG
j2M

w
lZ

LeI=
 on 05/07/2023
(approximately 1 per 100,000). GSD9 is a glycogenolytic glycogen storage
disease presenting similarly to McArdle disease; however, the phenotype may be
mild and show variable penetrance.48,49 Tarui disease (GSD7) is the most
common glycolytic glycogen storage disease and is due to impaired
phosphofructokinase activity. Patients with Tarui disease (and other glycolytic
disorders) present with symptoms similar to patients with McArdle disease but
do not have a second-wind phenomenon.50,51 Other glycolytic disorders include
phosphoglycerate kinase 1 deficiency, phosphoglucomutase 1 deficiency (also
known as congenital disorder of glycosylation type It), phosphoglycerate mutase
deficiency (GSD10), lactate dehydrogenase deficiency (GSD11), aldolase A
deficiency (GSD12), and β-enolase deficiency (GSD13).

Clinical Presentation
Patients with myopathic glycogen storage diseases usually exhibit symptoms
within the first few seconds to minutes of activity or if the intensity of activity
increases beyond the anaerobic threshold. Most myopathic glycogen storage
disease patients present with exercise intolerance, and most will experience
rhabdomyolysis at some point in their lives. Cramping symptoms during exercise
A 45-year-old man presented to the emergency department with severe
muscle pains in the legs and arms 24 hours after helping a friendmove out
of his house. His creatine kinase (CK)was 8000U/L, but hewas anuric and
his creatinine was twice the upper limit of normal. He was hydrated and
carefully followed for a week and his CK returned to 700 U/L and
fluctuated around 1000 U/L for 2 months, but his creatinine normalized.
His past medical history was notable only for type 2 diabetes.

The patient was referred to a neuromuscular clinic for assessment. On
further history, the patient noted that he had always avoided exercise as
a child, and recalled going to Europe with his family as a teenager and not
being able to keep up with his grandmother on a city tour, especially
when climbing stairs; however, if he slowed down and rested a bit he
could keep going all day, albeit at a low intensity.

His neurologic examination was normal aside from a reduction in
vibration sensation in the toes and he had a deformed first
metatarsophalangeal joint from recurrent episodes of gout.

Given the typical history of McArdle disease, his PYGM gene was
sequenced and he was found to be homozygous for the common
p.Arg50* mutation.

This is a typical history for a patient with McArdle disease, with lifelong
myalgia/cramps with high-intensity activity and a second-wind
phenomenon. The gout was due to myogenic hyperuricemia, and failure of
his CK to normalize is typical of McArdle disease but not of most other
glycogen storage diseases. With preexercise sucrose and knowledge of his
disease and its triggers, he was able to exercise 3 times a week for
30 minutes with no further bouts of rhabdomyolysis.
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KEY POINTS

● The creatine kinase will
normalize in most of the
glycogen storage diseases,
except in McArdle disease
where it is persistently
elevated.

● Patients with myopathic
glycogen storage diseases
typically have recurrent
bouts of cramps with or
without rhabdomyolysis
with shorter-duration/
repetitive and/or
higher-intensity physical
activities.

● There is no added
diagnostic value from an
ischemic versus
nonischemic forearm
exercise test, yet it adds to
the risk of local
rhabdomyolysis and
compartment syndrome;
consequently, the
nonischemic version is
recommended.
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may be alleviated by reducing exercise intensity or resting and then carefully
resuming activity (second-wind phenomenon). Often there is delayed-onset
muscle soreness that may be associated with dark urine/pigmenturia that
patients often describe as “cola,” “tea,” “red,” “brown,” or “black.” The pigment
comes from myoglobin which can lead to acute tubular necrosis.
Rhabdomyolysis is defined as an acute rise in CK to over 10 times the upper limit
of normal (usually >2000 U/L).

The diagnosis ofmyopathic glycogen storage diseases is often delayed until the
second or third decade as many patients assume that they are just “not good
athletes” and often adapt activities to minimize the symptoms. Targeted
questioning usually reveals a childhood history of pigmenturia, excessive
shortness of breath upon exertion, or not “keeping up” or being the “worst
athlete in the class.” Patients with McArdle disease often report fewer symptoms
following a high-carbohydrate meal; in contrast, patients with glycolytic defects
often feel improvement in their symptoms after a prolonged fast (CASE 10-2).

The neurologic examination in most of the metabolic myopathies is usually
normal between bouts of rhabdomyolysis; however, some patients (mainly those
with GSD552 and GSD12) eventually develop fixed proximal weakness. Ptosis
(14.2%) and pattern retinal dystrophy (36.6%) have also been reported in
patients with McArdle disease.52 CK between rhabdomyolysis events is usually
normal with most glycogen storage diseases; however, CK is chronically elevated
in nearly all McArdle disease patients. Hemolysis and even hemolytic anemia can
be seen in GSD7, GSD12, and phosphoglycerate kinase 1 deficiency. Because of
the compensatory increased flux through AMPD1 and the xanthine oxidase
pathways, both glycogenolytic and glycolytic defects can have myogenic
hyperuricemia, precipitating gout in approximately 25% of patients.52 A higher-
than-expected incidence of hypothyroidism (15.2%) was reported in McArdle
disease,52 further supporting the suggestion that treatable secondary disorders
(eg, hypothyroidism, vitamin D or B12 deficiency, hypogonadism

53) should be
screened for in all metabolic and structural myopathy patients. A summary of
some key features revealed by the history in specific glycogen storage diseases
can be found in TABLE 10-3.

Diagnostic Testing
The classic diagnostic test to rule in or rule out a glycogen storage disease is the
forearm ischemic test, which shows a blunted lactate and exaggerated ammonia
response postexercise.30 Typically, a sphygmomanometer cuff is inflated above
arterial pressure and 1 minute of rhythmic maximal handgrip exercise is
performed, followed by the collection of preexercise and postexercise samples
for plasma lactate and ammonia measurements. A normal response is an increase
in both lactate and ammonia greater than 3 times baseline. Most glycolytic and
glycogenolytic defects (except GSD948 and, rarely, GSD10)will show amarkedly
attenuated lactate rise and an accentuated ammonia rise. A suboptimal effort is
reflected as a failure of both lactate and ammonia to rise following exercise. The
sphygmomanometer cuff is not strictly necessary and rhythmic contraction per
se is sufficient to yield good test sensitivity and specificity.54,55 Consequently, a
1-minute nonischemic forearm exercise test is routinely used to lower the risk of
rhabdomyolysis and acute compartment syndrome.

The current nonischemic forearm exercise test protocol involves placing a
plastic catheter into an antecubital vein and taking a blood sample for plasma
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TABLE 10-3 Specific Testing for Metabolic Myopathies

Disorders Testing

Glycogen storage
diseases

CK (chronic elevation in McArdle), approximately 50% of patients will have elevated uric acid

Nonischemic forearm exercise test or graded exercise stress test with minimal to no lactate rise,
and exaggerated ammonia rise

Graded exercise stress test with a second-wind phenomenon is more common inMcArdle disease

Graded exercise stress test without a second-wind phenomenon ismore consistent with glycolytic
defects and GSD9

EMG/NCV is usually normal

Muscle biopsy with or without high glycogen: no phosphorylase activity is consistent withMcArdle
disease; no phosphofructokinase activity is consistent with GSD7

Next-generation sequencing panels for glycogen storage diseases, rhabdomyolysis or myopathy
panels with glycogen storage disease genes or whole-exome sequencing (research)

Fatty acid oxidation
defects

CK normal between bouts of rhabdomyolysis

Total carnitine usually normal

Acylcarnitine profile often abnormal (fasted or following a graded exercise stress test)

Urine organic acids (dicarboxylic acids) may be elevated in beta-oxidation defects

Hypoketotic hypoglycemia during an event

EMG/NCV is often normal

Muscle biopsy may show increased neutral lipids but can be normal (ie, carnitine palmitoyl
transferase 2 deficiency)

Enzyme analysis and acylcarnitine in fibroblasts

Next-generation sequencing panels for fatty acid oxidation defect, rhabdomyolysis or myopathy
panels or whole-exome sequencing (research)

Mitochondrial
myopathy

CK may be chronically elevated

Lactate elevated in approximately 65% of patients with primary mitochondrial myopathy

Alanine elevated in approximately 20% of patients with primary mitochondrial myopathy

Urine organic acids (tricarboxylic acids or 3-methyl glutaconic acid) may be elevated

Nonischemic forearm exercise test shows no deoxygenation with blood gas

Graded exercise stress test shows a lowVO2max, high respiratory exchange ratio, hyperkinetic heart
rate, and ventilation response

EMG is often normal (TK2, often myopathic)

Muscle biopsy may show ragged red fibers, cytochrome c oxidase deficiency, and paracrystalline
inclusions (ultrastructure)

Enzyme analysis on muscle can show mixed or single electron transport chain defects but cannot
be used as sole diagnostic source

mtDNA sequencing if mtDNA is suspected (ie, MELAS), ideally from muscle and not blood

Next-generation sequencing mitochondrial panels or whole-exome sequencing for suspected
nuclear defects

CK = creatine kinase; EMG = electromyography; MELAS = mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes;
mtDNA = mitochondrial DNA; NCV = nerve conduction velocity; TK2 = thymidine kinase; VO2max = maximal oxygen consumption.
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KEY POINT

● Next-generation
sequencing panels are
replacing many of the
previously used diagnostic
tests but must be
interpreted in the clinical
context and may need
additional metabolomic,
histological, or biochemical
support.
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lactate and ammonia into wet ice-chilled tubes, followed by 1 minute of maximal
handgrip dynamometry with a 9 second on, 1 second off ratio, and then taking
blood samples after 1 minute.30 A normal test with proper effort rules out every
glycolytic and glycogenolytic defect except for GSD948 and GSD10.56

Nerve conduction studies and EMG are normal inmyopathic glycogen storage
diseases except during a muscle contracture when there will be electrical silence.
Magnetic resonance spectroscopy shows enhanced phosphocreatine hydrolysis, a
lack of acidosis, and an increase in phosphomonoesters in distal glycolytic
defects. The author’s clinic generally does not use magnetic resonance
spectroscopy as we have not found that it adds any diagnostic value beyond the
history, examination, blood work, exercise testing, and genetic testing.

If the history is highly suspicious for a glycolytic or glycogenolytic defect, the
author often proceeds directly to genetic testing, and only uses the nonischemic
forearm exercise test for more atypical cases and in low pretest probability cases
of ill-defined “exercise intolerance.” Alternatively, a graded exercise stress test
with VO2max and prelactate and postlactate can be used to evaluatemitochondrial
disease and glycogen storage diseases, including GSD9.48

The author has been sending most patients with moderate to high pretest
probability of myopathy or rhabdomyolysis for next-generation sequencing
panels for the past 10 years. Several CLIA (Clinical Laboratory Improvement
Amendments) certified laboratories offer full sequencing of the coding and
intron/exon boundary regions for all known glycolytic and glycogenolytic
defects and all the possible pseudometabolic disordersmentioned previously. For
a searchable database to find laboratories that offer rhabdomyolysis or myopathy
panels, it is best to use the National Institutes of Health (NIH) Genetic Test
Registry website (ncbi.nlm.nih.gov/gtr/). The author is doing fewer muscle
biopsies in the past 10 years and generally only in patients with a negative
myopathy panel result or when only a single pathogenic variant is discovered in
an autosomal recessive disorder that fits the phenotype. In the latter case, the
muscle can be used for specific enzyme analysis and, if that is positive, RNA
sequencing and whole-genome sequencing or targeted intronic sequencing can
be performed to discover a second variant that is not discoverable with exome
slice–based or Sanger-based panels. Another advantage of performing a muscle
biopsy in atypical cases is that it is possible that histologic features of a
pseudometabolic myopathy can lead to an accurate diagnosis. Some examples
that the author has encountered include cores in RYR1 andCACNA1Smutations,
abnormal dystrophin staining (Becker muscular dystrophy), ragged red fibers
(mitochondrial myopathy), or membrane-bound glycogen (Pompe disease).
A summary of some of the helpful tests in glycogen storage diseases is presented
in TABLE 10-3.

Treatment
Many patients alter their lifestyle activities to mitigate symptoms even decades
before a definitive diagnosis ismade.Most patients avoid high-intensity activities
and start any exercise at a low intensity and titrate intensity to minimize
symptoms. Patients who experience a second wind usually know the duration,
intensity, and type of activity that leads to symptoms and ease off before the
symptoms are too severe and resume activitywhen the secondwind “kicks in.” It
is important for patients with glycogen storage diseases to start exercising at a
lower intensity and gradually increase the intensity and duration while
CONTINUUMJOURNAL.COM 1761
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TABLE 10-4

Disease

Glycogen storage diseases

Fatty acid oxidation defects

Primary mitochondrial
myopathies
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monitoring for symptoms and reducing the intensity as needed. Although once
thought to be a contraindication, regular exercise actually lessens symptoms of
McArdle disease.57-59 The author tells patients to not exercise on days when they
have a superimposed cold, flu, virus, or fever; to listen to their bodies; and to
monitor for greater than typical mild exercise-induced myalgia and reduce
exercise intensity or duration. The consumption of carbohydrates containing
glucose (including sucrose, which is comprised of fructose and glucose) shortly
before exercise can “bypass” glycogenolytic metabolic defects and improve
exercise tolerance, allowing patients with McArdle disease to proceed to their
second wind more rapidly.60,61 One study found that 37 grams of oral sucrose
consumed 5 to 10 minutes before exercise improved exercise capacity and
reduced symptoms.60 Another study found that patients with GSD3
(debranching enzyme deficiency) also showed improvements in exercise
capacity with preexercise fructose ingestion62; however, neither oral sucrose nor
IV glucose improved exercise capacity in patients with GSD9.63 In contrast,
patients with glycolytic defects (ie, GSD7) tolerate exercise better in the fasted
state and doworse with carbohydrate feeding given that carbohydrates attenuate
the liberation of free fatty acids via lipolysis as an alternative fuel source.64
Specific Metabolic Myopathy Treatments

Treatment

Careful and progressive exercise training

Preexercise sucrose/glucose in McArdle disease

Overnight fasting for glycolytic defects (eg, phosphofructokinase deficiency)

Creatine monohydrate (no greater than 0.1 g/kg/d)

Pyridoxine 50 mg/d for null phosphorylase mutations

Check for and treat hyperuricemia/gout

High-protein diet (approximately 15% total calories)

Possibly ketogenic diet, but further studies required

Careful and progressive exercise training in fed state

Avoid fasting and exercise during illness/fever

L-carnitine supplementation (only if low total levels, eg, OCTN2-associated carnitine
transporter defect)

High-carbohydrate diet

Carbohydrates before and during exercise

Triheptanoin may be used in severe or treatment-resistant cases, subject to local regulatory
availability and approval

Careful and progressive exercise training

Avoid fasting and exercise during illness/fever

Cocktail treatment (coenzyme Q10 or idebenone, α-lipoic acid, vitamin E, creatine
monohydrate)

L-carnitine only if levels are low
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KEY POINTS

● Although acute exercise
can be a trigger for
rhabdomyolysis in patients
with inborn errors of
metabolism, all patients can
adapt to carefully designed
exercise training programs
and raise the exercise
threshold for induction of
rhabdomyolysis and confer
long-term protection.

● Given that sucrose is a
disaccharide made from
glucose and fructose, one
can get approximately 25 g
of preexercise sucrose
equivalent carbohydrate
from 250 mL of fruit juice
(fructose and glucose) or
soda, or 400 mL of sport
drink. (Although the latter
two examples have no other
nutritional value, they do
contain high-fructose corn
syrup [fructose and
glucose].)

● Creatine monohydrate
(approximately 100 mg/kg/d)
and a high-protein diet may
confer some benefit in
patients with glycogen
storage diseases, but it is
important to not use higher
creatine doses.

● Carnitine
palmitoyltransferase 2
deficiency is the most
common fatty acid oxidation
defect, but trifunctional
protein and very-long-chain
acyl-CoA dehydrogenase
deficiencies can present in
an identical manner.
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Patients with McArdle disease carry PYGM mutations that lead to
nonsense-mediated mRNA transcript decay (ie, p.R49X), have no PYGM
protein, and thus can have a secondary pyridoxine (vitamin B6) deficiency.
Consequently, pyridoxine supplementation (approximately 50 mg/d) has been
suggested for GSD5 patients with null mutations.65,66 The clinical efficacy of
pyridoxine supplementation has not been confirmed in a randomized clinical
trial; however, it seems to be a low-risk suggestion, especially because pyridoxine
is a known cofactor for enzymes involved in the liberation of amino acids that
can be used as an energy source in glycogen storage diseases during
longer-duration exercise. High-protein diets may increase alternative fuel
(amino acid) availability; however, branched-chain amino acid (ie, leucine,
isoleucine, and valine) supplements did not show a benefit in a very small
cohort.67 Creatine monohydrate in low dose (approximately 0.1 g/kg/d) showed
bioenergetic improvements in McArdle disease patients during exercise68;
however, the same group showed that higher creatine doses (approximately
0.3 g/kg/d) led to exercise impairment and myalgia.69 Studies have also shown
that ribose, verapamil, and dantrolene sodium were not effective in McArdle
disease70 and show side effects, including diarrhea and hypoglycemia symptoms
(ribose) and fatigue, vertigo, and muscle weakness (dantrolene sodium). A
randomized clinical trial also evaluated the effect of an odd-chain free fatty acid
called triheptanoin in patients with McArdle disease but found no clinical
benefit.71 Finally, one study found mild improvements in exercise capacity
and improved symptoms with 2.5 mg of ramipril in patients with an
angiotensin-converting enzyme deletion/deletion haplotype (approximately
30% of the general population).72 General suggestions for patients are given in
TABLE 10-4.

FATTY ACID OXIDATION DEFECTS
Fatty acids are categorized according to the number of carbons as short (2 to 4),
medium (6 to 12), long (14 to 18), and very-long (20 and above) chain fatty
acids. The long- and very-long-chain free fatty acids require the carnitine
palmitoyltransferase system for mitochondrial transport, whereas short- and
medium-chain free fatty acids can directly enter the mitochondrial matrix for
β oxidation. All the metabolic myopathy–associated fatty acid oxidation
defects are autosomal recessive disorders, with carnitine palmitoyltransferase
2 (CPT2) deficiency being approximately 2.5 times less common
(approximately 1/250,000) than McArdle disease. Trifunctional protein
(TFP) and very-long-chain acyl-CoA dehydrogenase deficiency (VLCAD)
deficiencies are clinically indistinguishable from CPT2 deficiency but are
less common.

Clinical Presentation
Most of the fatty acid oxidation defects present with exercise-inducedmyalgia in
contrast to the actual cramping symptoms seen in glycogen storage diseases.
Patients with fatty acid oxidation defects usually experience pigmenturia later
the same day or within 24 hours of exercise-induced rhabdomyolysis, often with
significant delayed-onset muscle soreness. Symptoms of fatty acid oxidation
defects are usually precipitated by fasting, prolonged exercise, or superimposed
illness. In retrospect, many patients with fatty acid oxidation defects recall
having myalgia and occasionally pigmenturia with superimposed illness and
CONTINUUMJOURNAL.COM 1763
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many are not diagnosed until their teenage years when they experience
rhabdomyolysis with longer-duration exercise (TABLE 10-2).

Diagnostic Testing
Blood testing is usually completely normal for resting CK, lactate, and glucose
between episodes of rhabdomyolysis. During an acute bout of rhabdomyolysis
the CK will rise within 2 hours and patients can also show hyperkalemia and
hypoketotic hypoglycemia. Patients with rhabdomyolysis can experience acute
renal failure with increased potassium, creatinine, and urea.

A serum acylcarnitine profile is the most sensitive and specific test for a fatty
acid oxidation defect. This test is usually abnormal between acute events;
however, testing in the overnight fasted state, following an aerobic exercise test,
or during an acute bout of rhabdomyolysis will further elevate the levels and
improve sensitivity and specificity. A specific acylcarnitine profile can suggest
the specific defect and support genetic testing. Even though the author and
others use myopathy genetic panels earlier in the diagnostic pathway, other tests
such as for acylcarnitines are very helpful in evaluating the common scenario
where multiple variants of uncertain significance (VUSs) are found in a panel
and a congruent metabolite pattern to the specific VUS in the appropriate
pathway provides confidence in the diagnosis and stops the diagnostic odyssey.
In contrast to the acylcarnitine profiling, the total free carnitine levels are usually
only abnormal (low) with severe nutritional deficiency, renal failure, valproic
acid use, or systemic carnitine deficiency due to mutations in SLC22A5. Urine
organic acid analysis may show an elevation of characteristic dicarboxylic acids
in β-oxidation defects, but often only during an acute bout of rhabdomyolysis.

As mentioned previously, the next-generation-sequencing–based gene panels
cover the more common fatty acid oxidation defects leading to rhabdomyolysis
(eg, CPT2, TFP, VLCAD) and some of the more rare fatty acid oxidation defects
associated with exercise-induced rhabdomyolysis (eg, medium-chain acyl-CoA
dehydrogenase deficiency, carnitine-acylcarnitine translocase deficiency). Most
rhabdomyolysis panels will also include the LIPIN1 gene which encodes a
magnesium-dependent phosphatidic acid phosphohydrolase involved in the
sarcolemma that is usually triggered by fever or other superimposed illness;
however, LIPIN1mutations have not yet been associated with exercise-
induced rhabdomyolysis.

In rare cases where the fasting acylcarnitine profile is normal and the genetic
panel is nonrevealing, the author usually does a graded exercise stress test (cycle
or treadmill) in the fasted state with preexercise and postexercise lactate and
postexercise acylcarnitine profiling.73 In addition to screening for a glycolytic/
glycogenolytic defect, a high resting lactate in combination with a low V02max

and a high respiratory exchange ratio can indicate a mitochondrial myopathy.
The author rarely does amuscle biopsy given that the diagnosis is obtainable with
genetic testing and acylcarnitine profiling; however, a significant increase in
neutral lipids (ie, oil-red-O or Sudan black staining) seen in a biopsy from a
patient with amyopathy should raise suspicion for a fatty acid oxidation defect or
mitochondrial disease. A massive increase in neutral lipids on the biopsy with a
high CK should also raise the possibility of autosomal recessive neutral lipid
storage disease with myopathy (NLSDM) due to mutations in the PNPLA2 gene
that encodes the ATGL protein that is required to breakdown intramyocellular
lipids. Although this disorder leads to slowly progressive myopathic weakness
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KEY POINTS

● A serum acylcarnitine
profile, especially when
fasted or during a bout of
rhabdomyolysis, is the most
sensitive and specific test
for fatty acid oxidation
defects.

● A high-carbohydrate diet
is the main recommendation
to reduce symptoms in
patients with fatty acid
oxidation defects.

● The mitochondria are the
final common pathway for
the oxidation of fat,
carbohydrates, and
proteins.
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and cardiomyopathy in the second and third decades, many patients do note
exercise intolerance when young.74,75 EMG and nerve conduction studies are
usually normal in fatty acid oxidation defects; however, a mixed axonal
neuropathy can be seen in cases of long-chain 3-hydroxyacyl-CoA
dehydrogenase (LCHAD) deficiency leading to progressive distal weakness
(TABLE 10-3).

Treatment
The general strategy formost patients with fatty acid oxidation defects is to avoid
disease triggers including physical activity in the fasted state or with a
superimposed illness and/or long-duration endurance exercise. Most patients
tolerate resistance exercise or shorter burst-type activity and many patients
consume higher-carbohydrate foods immediately before exercise; however, one
study did not find benefit from oral glucose administration.76 The author
recommends a habitual diet with relatively low fat (less than 30%) and higher
carbohydrates.77 Despite the biochemical plausibility for the use of riboflavin,
medium-chain triglycerides, and L-carnitine,78,79 they have not been proven to
be effective in clinical trials with small subject numbers. The author recommends
that total carnitine levels be checked and replacedwith oral L-carnitine if patients
are deficient.

Initial in vitro studies suggested the use of the fibric acid derivative,
bezafibrate80; however, class I evidence suggests no clinical benefit in CPT2
deficiency.81 Much interest in the use of triheptanoin exists given that it was
shown to improve clinical metrics in patients with fatty acid oxidation
defects,82,83 including cardiomyopathy.84 Triheptanoin was shown to reduce
hospitalizations in patients with fatty acid oxidation defects in a retrospective
study,85 improved exercise capacity in patients with CPT283 and other fatty acid
oxidation defects,86 and reduced major clinical events in patients with fatty acid
oxidation defects in a prospective study.87 Some of the potential treatment
options for fatty acid oxidation defects,88 including triheptanoin,89 have been
recently reviewed, and are also summarized in TABLE 10-4.

MITOCHONDRIAL MYOPATHIES
Primary mitochondrial myopathies are genetic disorders that impair electron
transport chain function and/or another biochemical function of the
mitochondria. A reduction in electron transport chain function leads to a
decreased ability to oxidatively metabolize fat, carbohydrates, and amino acids,
lowering ATP production. Dysfunction of the electron transport chain can also
lead to an increase in reactive oxygen species that can damage lipids, proteins,
and DNA. Most patients with primary mitochondrial myopathies manifest
symptoms during periods of high ATP demand such as fasting, superimposed
illness, and/or long-duration exercise. Many patients also experience fixed
multisystemicmanifestations in other tissues with a highmetabolic demand such
as the brain (especially cranial nerves II and VIII) and even the gastrointestinal
tract. Patients with primary mitochondrial myopathies may have extra-muscle
manifestations with unaccustomed exercise including exercise-induced deafness
or amblyopia or abdominal pain and/or vomiting. Patients with primary
mitochondrial myopathies can present with fixed weakness and exercise
intolerance with or without rhabdomyolysis. Given the complexity of the
mitochondrial cytopathies and primary mitochondrial myopathies in terms
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of workup and management, readers are referred to other resources90-92; this
article will focus on the metabolic myopathy aspects of primary mitochondrial
myopathies.

The mitochondria are cellular organelles present in all cells except mature
red blood cells. Themitochondria are dynamic and interact with other organelles
such as the endoplasmic reticulum. The evolutionary origin of mitochondria as a
vestige from bacteria is reflected in the fact that they retain a tiny fragment
of circular, maternally inherited, double-stranded DNA called mitochondrial
DNA (mtDNA). The 16,569–base pair mtDNA in humans encodes 38 genes
including 2 ribosomal RNAs, 22 transfer RNAs, 13 protein-encoding mRNAs
(complex I, III, IV, and V), and a protein called MOTS-c. Mitochondrial
replication requires many nuclear-encoded proteins including polymerase
gamma (POLG) and a helicase called twinkle (TWNK gene), among others.
Because the replication of the mtDNA is not dependent on the cell cycle,
mitochondrial biogenesis can occur in skeletal muscle in response to cellular
stressors such as exercise.

The first mtDNA mutations linked to human disease were point mutations at
positions 3243 (m.3243A>G) and 11,778 (m.11778G>A) of the mtDNA,
associated with mitochondrial encephalomyopathy, lactic acidosis, and
strokelike episodes (MELAS) and Leber hereditary optic neuropathy (LHON),
respectively, and a large-scale mtDNA deletion was reported in Kearns-Sayre
syndrome.93-95 The mtDNA contains many benign polymorphisms that may
have contributed to evolutionary biological fitness and some define specific
mitochondrial haplotypes. The increasing recognition of raremtDNA variants is
a challenge from a diagnostic perspective as a rare or previously unreported VUS
discovered in a patient with possible primary mitochondrial myopathy is not
necessarily disease causing. With an increasing number of mtDNA sequences
being stored in public databases, one can interrogate a VUS using the allele search
and MITOMASTER tools at mitomap.org/MITOMAP. A search for the
nuclear-encoded DNA variants linked to mitochondrial disorders can also be
done in MITOMAP.

Copies of the pathogenic mtDNA mutations are usually present in varying
proportions of mutant versus wild type within a cell/tissue (heteroplasmy). In
some disorders, such as LHON, all copies of mtDNA are mutant (homoplasmy).
In general, a higher mutant heteroplasmy will have a more deleterious effect on
cellular energetics and more severe clinical manifestation(s). Cells that rapidly
turn over (eg, blood cells) may partially or totally selectively eliminate the
mutant mtDNA genomes; consequently, a normal blood mtDNA analysis may
not rule out a mtDNA-associated primary mitochondrial myopathy and is
another reason to consider a muscle biopsy if a primarymitochondrial myopathy
is suspected.

Clinical Presentation
Mitochondrial cytopathies show a broad range of phenotypic and genotypic
heterogeneity. MELAS shows phenotypic heterogeneity in that patients with the
same genetic mutation (ie, m.3243A>G) may be asymptomatic, show only
maternally inherited diabetes and deafness (MIDD), or display the most severe
manifestation with childhood onset of strokes, seizures, cardiomyopathy, short
stature, and intellectual disability/dementia. In contrast, chronic progressive
external ophthalmoplegia (CPEO) shows genotypic heterogeneity where
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KEY POINTS

● Many of the
mitochondrial myopathies
are labeled as acronyms that
describe the canonical
clinical features.

● A normal mtDNA
sequence from
blood-derived DNA does
not rule out a primary
mitochondrial myopathy
due to a pathologic mtDNA
mutation.

● Most patients with
primary mitochondrial
myopathies will have
exercise intolerance, and
chronic daily fatigue is not a
distinguishing clinical
feature of primary
mitochondrial myopathies
and can be seen in many
other nonmitochondrial
disorders.

● Abnormal neurologic
examination findings should
prompt a further
consideration of a primary
mitochondrial myopathy in a
patient with
rhabdomyolysis.
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patients with the same phenotype may have a sporadic mtDNA deletion (most
patients) or an mtDNA deletion secondary to a nuclear-encoded mtDNA
maintenance gene mutation, or a specific mtDNA point mutation.96

Most patients with primary mitochondrial myopathy will have exercise
intolerance due to low VO2max.

97 A clinical challenge is that many disorders
present with exercise intolerance and can be much more common in the general
population, including asthma, chronic obstructive pulmonary disease, cardiac
issues, deconditioning, and other medical issues (eg, hypothyroidism,
hypogonadism, Addison disease, hypercalcemia, inflammatory disorders,
vitamin B12 deficiency). In contrast, some patients with primary mitochondrial
myopathy will have other manifestations of a mitochondrial cytopathy (eg,
seizures, encephalopathy, optic atrophy) that can overshadow the exercise
intolerance and even fixed weakness.

Many patients with primary mitochondrial myopathy will report that they
“were not into sports” or were “the worst athlete in the class.” Patients with
primary mitochondrial myopathy often also report shortness of breath on
exertion and premature fatigue/myalgia during exertion, and some have fixed
weakness that impacts the activities of daily living. Given that the mitochondria
are not under metabolic stress in the resting condition, the commonly reported
symptoms of being totally exhausted or having nonrestorative sleep are no more
common in patients with primary mitochondrial myopathy than in the general
population. Unlike fatty acid oxidation defects or glycogen storage diseases
where rhabdomyolysis and pigmenturia are very common clinical features,
many patients with primarymitochondrial myopathy do not have severe cramps
during exercise, but often have exercise-induced myalgia, similar to patients
with fatty acid oxidation defects. Exercise-induced rhabdomyolysis has been
reported in cases of cytochrome b, cytochrome c oxidase (COX), TK2, and
MELASm.3260A>Gmutations.98-101 For an illustrative example of a patient with
mitochondrial myopathy, see CASE 10-3.

The history and physical examination are often helpful in evaluating a primary
mitochondrial myopathy. Findings suggestive for primary mitochondrial
myopathy include hypoacusis, optic atrophy, short stature, ptosis,
ophthalmoparesis, type 2 diabetes, migraine variant headaches, seizures, strokes
and strokelike episodes, head and neck lipomas, peripheral neuropathy, ataxia,
spasticity, cardiomyopathy, conduction block, and intestinal pseudoobstruction.
Proximal muscle weakness may be seen with or without hyperCKemia in several
disorders including mtDNA depletion (TK2 mutations), MELAS, and CPEO
and more rarely in others. A positive maternal family history is helpful to rule in
an mtDNA-based primary mitochondrial myopathy; however, a primary
mitochondrial myopathy may also appear sporadically or with mendelian
inheritance (autosomal recessive, autosomal dominant, or X-linked recessive)
(TABLE 10-2).

Diagnostic Testing
Testing for a primary mitochondrial myopathy starts with an accurate history
and neurologic examination; however, several ancillary tests can help to rule in
or rule out a primary mitochondrial myopathy. Serum/plasma lactate is one of
the canonical blood tests with elevations seen in approximately 65% of adult
patients (sensitivity) with primary mitochondrial myopathy and normal levels
seen in over 90% of people without primary mitochondrial myopathy
CONTINUUMJOURNAL.COM 1767
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(specificity).30 Lactate should be taken on ice and analyzed promptly to avoid
false-positive results due to red blood cell lactate generation. Other false-positive
lactate results can be found in diabetes, with difficult blood draws (eg,
struggling, prolonged tourniquet use), and if the patient has recently (within
1 hour) consumed a high-carbohydrate meal. Serum CK activity can be
normal or mildly elevated (usually <3 times the upper limit of normal) in
patients with primary mitochondrial myopathy with higher levels prompting
an assessment for muscular dystrophy. Plasma amino acid testing may show
elevated alanine, and urine organic acid testing can show elevations of
3-methyl glutaconic acid and/or tricarboxylic acid intermediates (eg,
fumarate, malate, citrate).

EMG may be normal in primary mitochondrial myopathy but may show a
nonspecific myopathic pattern with small, brief, early recruiting action
potentials. EMG is also helpful to rule out other myopathies as a cause of exercise
intolerance or rhabdomyolysis (eg, myotonic potentials, neurogenic changes).
Nerve conduction studies are also usually normal in primary mitochondrial
myopathies but may show an axonal-sensory (eg, POLG mutations) or
motor-sensory neuropathy (eg, myoclonic epilepsy with ragged red fibers
[MERRF]; mitochondrial neurogastrointestinal encephalopathy [MNGIE];
neuropathy, ataxia, and retinitis pigmentosa [NARP]).
A 30-year-oldman presented to the emergency department with myalgia
following a 45-minute spin class. His initial creatine kinase (CK) was
76,000U/L, but once hewas hydrated it improved to 8000U/L at the time
of discharge and eventually normalized within 3 weeks. Because this was
his third documented occurrence of rhabdomyolysis and he recalled
similar episodes of fasting or exercise-inducedmyalgia as a child, he was
referred to a neuromuscular clinic for assessment.

His neurologic examination was normal, and tests for fasting
acylcarnitines, lactate, amino acids, CK, vitamin D, and
thyroid-stimulating hormone (TSH), as well as a 406-gene next-
generation sequencing myopathy panel (which included mtDNA
sequencing), were also normal. A muscle biopsy of the right vastus
lateralis showed ragged red and cytochrome c oxidase–negative fibers
with ultrastructural paracrystalline inclusions. Mitochondrial DNA
(mtDNA) sequencing from muscle-derived DNA revealed a MT-CYB
variant (m.15762G>A) at 86% mutant heteroplasmy, and this was
confirmed to be nondetectable in blood-derived DNA.

This case highlights that mtDNA mutations may be at low levels in blood
due to selective pressure to eliminate pathogenic mutations in rapidly
turning over tissues; consequently, a negative mtDNA test from
blood-derived DNA cannot rule out a mitochondrial disease. It also
highlights the value of a muscle biopsy in a patient with rhabdomyolysis
where the diagnosis remains unresolved after next-generation sequencing
testing.
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KEY POINT

● A normal lactate does not
rule out a primary
mitochondrial myopathy.
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Exercise stress testing using a stationary bicycle or treadmill may show a low
VO2max and/or a high respiratory exchange ratio (indicative of early lactate
production) and/or a disproportionate heart rate response in primary
mitochondrial myopathy.102 Adding a preexercise and postexercise lactate test to
a low-intensity exercise test was shown to have only limited sensitivity and
specificity,103 although complex nuances to exercise testing exist beyond the
general comments in this article.104 A normal exercise stress test is helpful in
ruling out primary mitochondrial myopathies but an abnormal test can be falsely
positive due mainly to hypodynamia-associated disorders (ie, immobilization,
arthritis, chronic fatigue syndrome, fibromyalgia). Some authors have also
reported the use of a nonischemic forearm exercise test linked with near infrared
spectroscopy or venous blood gas measurements to demonstrate an impairment
of deoxygenation associated with a mitochondrial defect.105,106 Practically, most
clinics can do a nonischemic forearm exercise test for patients with exercise
intolerance/rhabdomyolysis with preexercise/postexercise ammonia, lactate,
and venous blood gas tests and evaluate both the glycogen storage diseases and
primary mitochondrial myopathies simultaneously. Phosphorus magnetic
resonance spectroscopy can show a rapid phosphocreatine hydrolysis and/or an
increase in lactate during exercise and/or a delayed phosphocreatine and/or ADP
kinetic recovery following exercise.107,108

A muscle biopsy is often abnormal in primary mitochondrial myopathies, in
contrast to the rare abnormalities seen in fatty acid oxidation defects and
glycogen storage diseases. Some of the canonical features of primary
mitochondrial myopathies include ragged red fibers (subsarcolemmal
accumulation of mitochondria on modified Gomori trichrome staining) and/or
COX-negative fibers. Furthermore, skeletal muscle is the preferred tissue for
mtDNA analysis given that mtDNA deletions are often only seen in muscle and
even some of the primary mitochondrial myopathy–associated mtDNA point
mutations are present in muscle and not in blood-derived mtDNA. In addition,
the muscle biopsy may provide histological clues to alternative diagnoses such as
high neutral lipids with normal mitochondria in a fatty acid oxidation defect,
central cores in malignant hyperthermia, dystrophic change in a
pseudometabolic myopathy, or an absent myophosphorylase stain in McArdle
disease. It is also important to evaluate skeletal muscle ultrastructure with
electron microscopy given that the mitochondrial alterations (eg, pleomorphic
mitochondria, paracrystalline inclusions, abnormal cristae) may appear before
the light microscopic changes.109

It is also important to consider mitochondrial enzyme analysis on skeletal
muscle in suspected primary mitochondrial myopathy given that enzymatic
analysis on fibroblasts or peripheral blood mononuclear cells may be normal.
Skeletal muscle electron transport chain enzyme activity and protein content can
be evaluated using skeletal muscle homogenates or isolated mitochondria.91,110

Single enzyme defects can be seen in complex assembly genes (ie, complex IV
in SCO2 mutations) or with mutations in specific electron transport chain
subunits (eg, MT-ND4, NDUFV1, cytochrome c oxidase subunit IV). It is
essential to not rely on mitochondrial enzyme analyses for the diagnosis of a
primary mitochondrial myopathy in isolation given that even 2 weeks of
hypodynamia can lower most of the enzyme activities and protein content
by approximately 20%.111 Multiple electron transport chain complex defects
can be seen in tRNA mutations or mutations in genes involved in mtDNA
CONTINUUMJOURNAL.COM 1769
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maintenance (eg, POLG) or any of the many recently discovered genes under
the umbrella of combined oxidative phosphorylation defects (eg, NARS2,
LARS2, TRMT5).112

Traditionally, mtDNA sequencing was done using the Sanger sequencing
method but that has been generally replaced by next-generation sequencing
methods.91,113 A next-generation sequencing–based method has been reported
that can sequence the entiremtDNA and 19 nuclear encodedmitochondrial genes
simultaneously and reliably detect heteroplasmy down to the 5% level.114 With
sufficient read depth, the next-generation sequencing methods can also measure
mtDNA deletions114 and are replacing methods such as Southern blotting,
MT-ND1/MT-ND4 polymerase chain reaction (PCR) ratios, and long-range
PCR. A downside of long-range PCR is that it can be too sensitive and tends to
overcall deletions and can be falsely positive in people older than age 45 years,
but a normal long-range PCR test can rule out an mtDNA deletion–associated
primary mitochondrial myopathy (high sensitivity). If a myopathy or
rhabdomyolysis panel run on blood-derived DNA (even if it includes mtDNA) is
normal and a mitochondrial disorder is still in the differential, it is best to use
muscle-derived DNA for mtDNA genetic testing to avoid false-negative mtDNA
results. Another advantage of obtaining a muscle sample is that it can resolve a
VUS with targeted blue native polyacrylamide gel electrophoresis, laser capture
microdissection, Western blotting, and other validation methods, requiring
more sophisticated evaluation in a research-based laboratory. Several
laboratories also offer next-generation sequencing panels that cover most of the
known nuclear-encoded genes associated with primary mitochondrial
myopathies and other mitochondrial cytopathies or myopathy or
rhabdomyolysis panels that contain many of the nuclear-encoded mitochondrial
genes (ncbi.nlm.nih.gov/gtr/). In some unresolved cases, whole-exome
sequencing is being used with next-generation sequencing methodologies to
discover rare or novel mitochondrial disease-associated genes.112,115,116

Whole-exome sequencing is also proving helpful in some complex
rhabdomyolysis cases by revealing compound heterozygosity (single variants
in multiple bioenergetic variants) that would not have been identified with a
more targeted panel (TABLE 10-3).117

Treatment
Primary mitochondrial myopathies result in a reduction of aerobic energy
production, increased free radical generation, a greater reliance on alternative
energy stores (ie, phosphocreatine), and elevated flux through glycolysis (high
lactate). Bypass strategies have included succinate and riboflavin to bypass
complex I118 and coenzyme Q10 to bypass complexes I and II.119,120 Antioxidants
have been heavily studied, including vitamin E, vitamin C, α-lipoic acid,
idebenone, and coenzymeQ10.119,120 The author and others have studied creatine
monohydrate as an alternative energy source with variable success97,121;
however, in the author’s opinion, the combination approach using a
“mitochondrial cocktail” is the most logical and is the strategy that most
clinicians adopt.92,119,122

The author’s group has shown some improvements in exercise capacity in
patients with primary mitochondrial myopathy with creatine monohydrate,97

and coenzyme Q10,120 and lower lactate and oxidative stress markers with
coenzyme Q10 plus vitamin E, α-lipoic acid, and creatine monohydrate in
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KEY POINTS

● For nuclear DNA–
encoded mitochondrial
testing (and for all other
myopathies) a blood sample
is sufficient for diagnosis
with the usual caveats (eg,
deep intronic mutations,
trinucleotide repeat
disorders) that are not
identified by standard
next-generation sequencing
testing.

● A mitochondrial cocktail
(multi-ingredient
supplement) approach is
superior to single agents to
target the multiple final
common pathways of
cellular dysfunction.
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combination.119 Based on the author’s research and 25 years of experience with
these supplements, the author typically starts with a “mitochondrial cocktail” of
coenzyme Q10 (200 mg 2 times a day), α-lipoic acid (200 mg 2 times a day),
vitamin E (400 IU 1 time a day or 200 IU 2 times a day) and creatine
monohydrate (75 mg/kg/d to 100mg/kg/d up to amaximum of 5 g/d 1 time a day
or divided 2 times a day). The author typically adds to this as needed depending
upon measured deficiencies (eg, carnitine, folate, vitamin B12, vitamin D) or
specific targets (eg, riboflavin in complex I defects or fatty acid oxidation
defects, thiamine in pyruvate dehydrogenase deficiency). Randomized trials
show some visual improvement in a subgroup analysis in patients with LHON
with the coenzyme Q10 analogue idebenone123,124; however, most patients with
LHON do not experience exercise intolerance or rhabdomyolysis.

Endurance exercise training has been shown to be safe and effective at
improving several clinical metrics of fitness and improving quality of life in
patients with primary mitochondrial myopathies.125-128 Resistance exercise
training was found to improve strength129 and reduce mutational heteroplasmy
in sporadic mitochondrial myopathies.130 A summary of some of the treatment
options for primary mitochondrial myopathy is presented in TABLE 10-4.
CONCLUSION
A detailed history of the events that precipitate the symptoms (eg,
rhabdomyolysis, exercise intolerance, exercise-induced cramps, or myalgia)
often points to a specific metabolic myopathy. As indicated previously,
glycogen storage diseases typically present with high-intensity exercise, whereas
fatty acid oxidation defects and primary mitochondrial myopathies usually
present during longer-duration/endurance-type activities or are exacerbated by
the superimposition of fasting or other acute illness. The neurologic examination
is typically normal in patients with glycogen storage diseases and fatty acid
oxidation defects; however, patients with primary mitochondrial myopathies
may show other canonical features of mitochondrial cytopathies, including
ptosis, optic atrophy, external ophthalmoplegia, hypoacusis, ataxia, neuropathy,
and fixed muscle weakness. Laboratory tests that can help in the evaluation of a
patient with suspected metabolic myopathy include serum CK activity, lactate,
uric acid, amino acids, acylcarnitine profile, and urine organic acid profile.
Nonischemic forearm exercise testing and/or graded exercise testing can help in
ruling in or ruling out metabolic myopathies. A muscle biopsy is necessary less
often due to more accurate and available genetic testing, but it still has a
significant role in the diagnosis of patients with atypical histories or persistent
hyperCKemia (other than McArdle disease), resolving a VUS found on a panel,
for mtDNA testing, and when no cause is found for recurrent rhabdomyolysis
after extensive testing.

It is important to establish a definitive genetic cause for a patient with
metabolic myopathy and this can be achieved in a large number of patients with
next-generation-sequencing–based panels. In patients with strong evidence for a
metabolic myopathy when no genetic cause is found, referral to centers of
excellence that often have access to research studies using whole-exome
sequencing, RNA sequencing, or whole-genome sequencing is important to
discover rare or unexpected variants or novel genetic causes for metabolic
myopathies. An accurate diagnosis for metabolic myopathy is important to
CONTINUUMJOURNAL.COM 1771
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determine appropriate therapies including lifestyle modification, nutritional
intervention, cofactor treatment, and proper exercise prescription, and for
providing accurate genetic counseling.
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