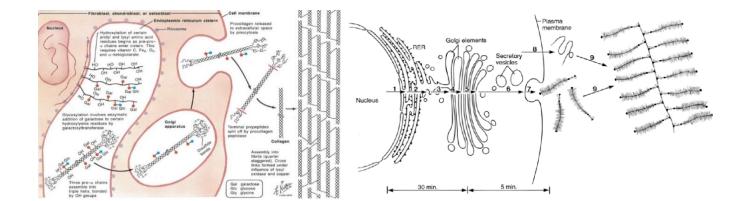
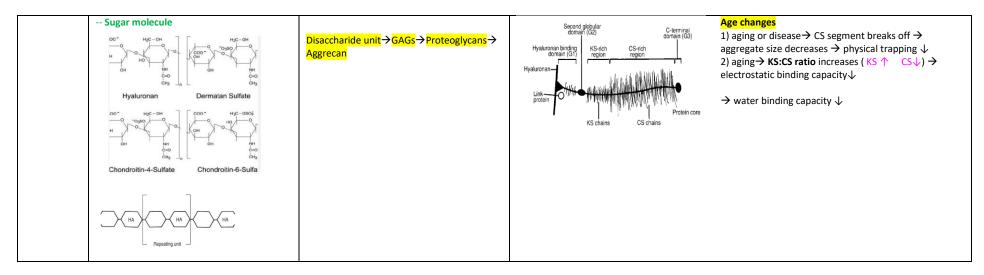
Connective tissue

Origin: Embryonic mesenchymal tissue (Mainly from Mesoderm 中胚层 some connective tissues develop from the ectodermal layer 外胚层 neural crest)


Function: 1) maintenance of *structure integrity*; 2) Immunocompetence, tissue defence, phagocytosis .

Cells		Extracellular matrix: ground subst	<mark>ance</mark>	Extracellular matrix: fibres				
Cell type	Produce	Function	GAGs (glycosaminoglycans)	GAGs (glycosaminoglycans) 3 main connective tissue fibre types				
Osteoblast	Fibre and ground	Structural	Sulphated:	Non-sulphated	1) Collage	n fibre: most abundant mammalian protein (protein collagen)	
Chondroblast	substance	Resists deformity	Chondroitin sulphate (4 & 6)	- Chondroiton		ar fibre: much finer, form an extensive n		protein collagen)
Fibroblast			keratan sulphate	- Hyaluronic acid		fibre (protein elastin)	5 (
Odontoidblast			Heparin	ingular entre a ella		irregular network, allow stretch,		
ouontolubidat			nepum			ed of elastin		
						ssels, skin, lung, ligaments, joint cap	sulo	
Plasma cell	1.Humoral and cell	Immunological	Brotooglycon (musershuggesharides)			Tissue		Main function
	mediated immunity		Proteoglycan (mucopolysaccharides)		Туре		Synthesized by	
Lymphocytes	2. Phagocytosis of Ag-Ab	defence	*GAGs + long protein core molecu		Type I	Bone, tendon, ligaments, fascia,	Fibroblast	Resistant to
Eosinophilic	complexes		* 3 regions of the core protein: 1)	HA binding region, 2)	2 α1+1 α2	skin, annual fibrosis	Osteoblast	tension
	complexes		KS rich region, 3) CS rich region			Cornea, dentin, fibrocartilage,		
			* the core protein contains >2000	amino acids.		meniscus		
Macrophages	Phagocytosis of debris,	Cellular defence	Aggrecans: proteoglycan + hyalurc	onic acid	Type II	Cartilage (principal collagen of HAC)	Chondroblasts	Resistant to
Neutrophil	bacteria	and clean-up			3 α1	Nucleus pulposus		pressure
						Vitreous humor of the eye		
Mast cells	Liberation of	Inflammation			Type III	Wall of blood vessels, internal organ	Fibroblasts,	Structural
Basophilic	inflammatory, other pharmacological	and repair.			3 α1	(spleen, liver, kidney), scars of skin, uterus, GI tract	reticular cells	maintenance
	substance (histamine)				Type IV	Basal lamina of epithelia, lens	Epithelial cells,	Support
						capsule	muscle, Schwann cell	(EDS)
Adipose cell	Fat storage	Energy reservoir	Function:		Type V cell surfaces, hair and placenta			
	Insulation		- trap water(H2O +ve dipoles \rightarrow -v	e charged GAGs)				
	Heat production		· · ·	- ·				


Tissue types: bone, muscle, tendon/ligaments, joints, cartilage, synovium, loose connective tissue, fat, cellular elements, extracellular matrix (ground substance)

Order of Tissue resists tension $\leftarrow \rightarrow$ compression: tendon> ligament> fascia> cartilage>bone (collagen $\leftarrow \rightarrow$ proteoglycans)

	Loose connective tissue	Dense connective tissue
Function	Bulk, padding and storage	Support, protect, connect
Location	Found throughout the body	Throughout the body
Features	Well vascularized and cellular (blood & lymphatic vessels, and nerves)	Relatively few cells, little ground substance.
	With a high matrix proportion	Dense regular CT: packed collagen (orientated in the direction of tensile stress; parallel to each other);
	The fibrous component varies in amount, orientation (depending on the forces and tissue experiences)	Dense irregular CT: collagen fibres (<i>usually elastic F</i>) are randomly orientated. Coarse & interwoven,
Component	Collagen fibres (resist tension); proteoglycans (resist compression)	Fibrous element,
Example	Subcutaneous tissue	Regular CT: Tendon, joint capsules, ligaments, ligamenta flava (<i>黄韧带</i>), cornea
		Irregular CT: some part of skin, capsules of spleen, liver, lymph nodes, dura mater, nerve sheath

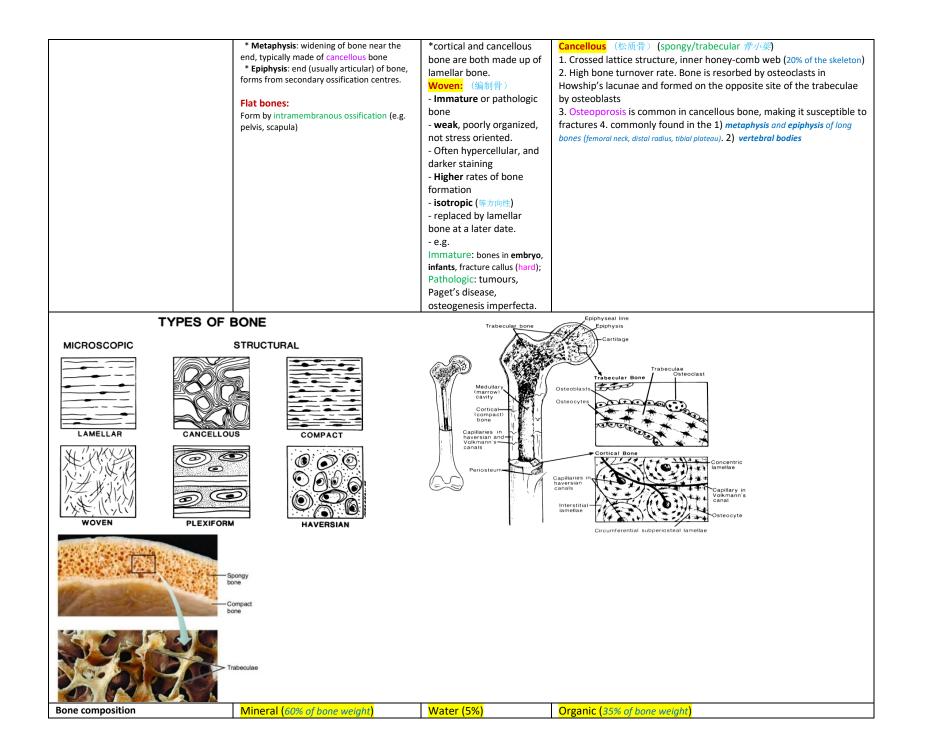
Туре	Basic Unit	Higher level structure	Description	Biosynthesis
Collagen (the rope)	Giv Giv Giv Giv Giv Giv Line Giv Giv Smallest of anino acids (Giv Chen Proline and Subscription) Proline and hydroxyproline, Proline and hydroxyproline, Proline and hydroxyproline, constitute about 20% and 25% of total amino acids (N-Y-Giv) Lash α chain consists of repetitive primary structure molecules (X-Y-Giv) 1. X often proline 20% or total AA 2. Y often hydroxyproline 25% 3. Glycine * Each chain Comprises about 1000 amino acid	a. Fibril b. Packing of molecules hole zone 0.4 D 0.4 D 1.5 nm diameter c. Collagen molecule 300 nm (4.4 D) 1.5 nm diameter c. Collagen molecule 300 nm (4.4 D) 1.5 nm diameter c. Triple helix 1.4 nm (0.15 D 0.4 nm (0.15	 Preprocollagen: single chain (α) Procollagen: triple helix, R-handed twist, bond by OH group. tropocollagen (collagen molecule): procollagen after end cut Microfibril: formed by tropocollagen chains Collagen: cross linked tropocollagen. (68nm straining <i>Parallel fibre under microscope</i>) * at least 12 types of collagens * The most abundant protein in the body * each molecule consists of 3 polypeptide subunits (<i>α chain</i>) * 3 α chain form a triple helix. https://www.youtube.com/watch?v=Lk94VI3Emgl Collagen synthesis & Disorders https://www.youtube.com/watch?v=5BsM8Rvg0G4 	Intracellular 1) transcription of mRNA from a collagen gene. 2) pro-α chains of procollagen are synthesized on the RER (rough endoplasmic reticulum) by translation of mRNA. 3) hydroxylation of proline and lysine residuals Requires: Vit C, O2, Iron, α ketoglutarate, hydroxylation enzymes (water, lemon) (RER) 4) Post-translational modifications (RER) - Glycosylation of C-terminal propeptide (sweets) - formation of disulphide bonds - Formation of the triple helix in the RER. 5) Exocytosis: Transportation of the procollagen from the RER to the Golgi apparatus. (Guests leave the home) Extracellular 1) the C-terminal and N-terminal propeptides are cleaved by procollagen peptidase c and N 2) procollagen → tropocollagen → microfibril. 3) collagen fibre is formed 4) collagen is stabilized by cross linking btw lysine or hydroxylysine residuals
Aggrecan	1) Disaccharide unit: Repeated sequence of 2 molecules HA: Hexose Amine (6 carbon glucosamine molecule)	 2) GAGS (Glycosaminoglycans) long chains of repeating disaccharide. Main GAGs: <u>CS 6</u> (Chondroitin Sulphate), <u>CS 4</u>, <u>KS</u> (Keratan sulfate), <u>DS</u> (Dermatan sulphate) *CS the most prevalent in cartilage (55-90%) * GAGs are highly charged and contribute to the osmotic pressure effect that holds water. COOHAcid terminals CH₂OSO₃H—sulphate terminal Sulphated GAGs attract water more strongly 	Proteoglycans - are large complex macromolecules - GAGs + core protein - CS composed of 25-30 repeating Units - KS chains are smaller; less amount than chondroitin, vary with age and disease. - CS= 2x KS water binding capacity →- water binding capacity dependent on CS total -Consists of a linear protein core with 3 globular regions: G1, G2. G3	 Proteoglycan Aggrecan: GAGs + core protein + hyaluronic acid→ extremely large molecule GAG side extensions are potentially ionizable→ gives the aggregates ability to trap water. Water trapping GAGs chains are highly polar and negatively charged, thus is the main force of GAG holding water (<i>positive water dipoles (H+)</i>. Thermodyniamic effect of the proteoglycan aggrecan physically trap water within the matrix .

Immunocompetent cells: Tissue specific cell origins

	Macrophages	Neutrophil	Eosinophil	Lymphocytes	Plasma Cells
Drigin Derived fr)	Monocytes in the blood	Mostly in blood, Attracted to cytokines from macrophages	Little time in the circulation	Prevalent in the gut.	From B lymphocytes
Function	-Phagocytosis (ingest dead cell, debris) -Defence against infection (ingest bacteria, secrete mediators: nitric oxide) -process and present antigens to lymphocytes	Assist in destroying bacteria - gather at the site of infection - Stick to capillary walls, migrate through	 Moderate the severity of allergic reaction (degrading histamine) Responsive to parasite infection contact dependent cytotoxicity 	Principle agents of the immune system - process antigens presented by macrophages - produce antibodies	 Major producers of humoral antibodies Produce immunoglobulins
Гурes	Fix or free (presents different phases- resident, elicited, and activated type)			T cells Cell mediated immunity. T stands for the thymus gland	Large nucleus, rough endoplasmic reticulum (RER)
Examples	Monocytes: in blood stream Osteoclast: in bone Type A cell: in synovium Alveolar macrophage: in lungs Histocytes: in skin Kuppfer cells: in liver Cytokins: - Interleukin 1. 6 - TNF - Interferon - Erythropoetin - PDGF (platelet derived growth factory) - FGF (fibroblast growth factor)	Mast cell Largest cells in CT (<i>Only found in tissues</i>) Contains basophilic granules Contains : Heparin, histamine, proteases, Eosinophilic chemotactic factor * histamin is released by compound exocytosis after antigen attaches to IgE. Function : mediate inflammation (<i>hay fever</i> , <i>asthma, anaphylaxis</i>)		Subset: Helper, cytotoxic, memory, regulatory, natural killer, gamma- delta T cell B cells Humoral immune response Essential of adaptive immune system. Form antibodies Perform function of Antibody presenting Cell (APC) Memory B cell remember specific antigens, respond quickly in the future.	
Stem cells	- TFG (<i>transforming growth factor</i>) Definition	Phenotypic expression.			1

- Cells of most MSK tissues are derived from	- genotype: refers to the genes present in its genome	СМЭС
 mesenchymal stem cells (multipotent cells) 	- Phenotype: the array of genes expressed and their relative levels of	FOF-2
 They can differentiate into bone, cartilage, 	expression.	POGF
fibrous tissues	-cell differentiation:	
	Only a fraction of the genes is expressed	
	A specific profile of gene expression \rightarrow sets the cell apart from other	Angiogenesis Osteogenesis Chondrogenesis Adipogenesis Myogenesis
	cells \rightarrow determining its structure and function	
	* cell proliferation and differentiation are inversely related.	
	* Contact inhibition: cell-cell contact prevents non-specific	BMP-2→ Writs→ C/EBP8→ MEF2→ Oxx→ PPARV→ MEF2→
	differentiation.	POGF→ N-Cadherin→ EGF→ N-Cadherin→ POGF→ C/EBPa→
		0) 💿 💿 🦳 🐋
		Endotheliai Osteoblast Chondrocyte Adipocyte Myocyte

Bone formation/ embryology


3 derivatives of skeleton 1) Cranial neural crest cells: Form flat bones of the skull, clavicle, cranial bone 2) Somites : forms the remainder of the axial skeleton. 3) Lateral plate mesoderm: form the long bone https://www.youtube.com/watch?v=Wmlbg/yhMts&list=PLTF9h- T1TcljUxgs0dgyDCaS-glauXcsL&index=9 Embryology development of skeletal system.	Ectoderm 外胚层: Mesoderm 中胚层: Endoderm 内胚层: Notochord 脊索 : release GF, SHH,	Mesoderm: A. Paraxial mesoderm 独旁中胚层 —》 somite 体节 (contains somatocoele) 1) Dermatome: → meninges, skin 2) myotome→ muscle (epiaxial muscle, hypaxial muscles) 3) Sclerotome→ vertebrae, IVD, ribs	 B Intermediate mesoderm 侧旁中胚层 (renal system, ureters; Testes , epididymis, overies, fallopian tubes) C Lateral plate mesoderm: (LPM) -3a: Somatic layer of LPM:
Limbs * A limb bud comprises mesoderm (中胚叶) covered by ectoderm * The LPM forms the bone and connective tissue of the growing limb bud * the muscle of the growing limb bud are formed by the somatic mesodermal plate	Axial * The axial skeleton is derived from the sclerotome of the somites * Mesoderm flanking the notochord begins to locally condense from 3 rd wks of gestation.		Neurocranium: derived from the neural crest, brachial arches
Position of limb buds 1) HOX genes 2) TBX4. TBX5 genes 3) FGF-10 AP (anteroposterior: digits): HOX, Shh PD (Proximodistal): AER/AEMF, HOX DV (Dorsoventral): Growth factors	limb bud in the distal direction o * The sonic hedgehog genes (Shł direction * The apical ectodermal ridge (A (ZPA) regulate the proximal dista	o ,	Apical ectodermal ridge (AER): → stimulate FGF-4, FGF-8. Progress Zone (PZ): <i>proliferating zone</i> . Allow from proximal → distal G.

4

Bone

Bone	Osteoblast	Osteocytes	Osteoclasts
Definition	Cells that form bone tissue(osteoid, or bone	Fully differentiated osteoblasts that are encased in	- Large multinucleated cells, formed by fusion of
	matrix)	secreted bone matrix (mature bone cells)	monocytes
	Derived from osteoprogenitor cell	Represent 90% of all bone cells	- Derived from monocytic precursor (bone marrow-derived
			macrophage-monocyte line)
			- Share some characteristics with monocytes and
			macrophages
Function	1. Produce ECM (Osteoid <i>类骨质</i>) (when mineralised	1) Regulate Calcium exchange	Resorption of bone
	with crystalline hydroxyapatite \rightarrow bone)	Canaliculi: channels through which the osteocytes	1. Carbonic anhydrase is expressed & generates
	2. Produce type 1 collagen	processes pass	intracellular protons (H+)
	3 Produce regulatory protein (growth factor)	Oriented in a radial fashion round the central Haversion	2. Proton pump pumps H+ into the matrix-cell space
	4 Produce non-collagenous proteins	canal	$(\rightarrow \text{ acidifying })$
	* osteonectin,	Connexins: Osteocytes have cell-cell connections	3. Acid dissolves the hydroxyapatite
	* osteocalcin,	2) Regulators of osteoblast and osteoclast activity:	

	* osteopointin, * sialoprotein, * Dentin		Respond to th bone loading	e development of surface char	nges under	 aided by lysosomal enzymes (acid-activate hydrolases(cathepsins) that degrade the matri collagen Glycosylated lysosomal enzymes are left in matrix surface to attract more osteoclasts. PTH stimulates function. 		
Features	 -When active, they have rounded, oval, polyhedral form, nucleus at the end (shows intense staining with basophilic stain)) - When not actively formed, OB elongated and flat, quiescent metabolically - Line the surface of bone, follow osteoclasts in cutting cones. - abundant Rough endoplasmic reticulum (produce type I collagen) - ALP distributed over the outer surface of the cell Express mRNA for a1 procollagen, ALP and bone forming proteins such as osteopontin and osteocalcin Receptors: PTH (parathyroid hormones), Vitamin D, Glucosteroids, Oestrogen, PGs. ILs https://www.youtube.com/watch?v=LC80hvjpHWo Bone cells and bone formation. 			ng cell processes that extend t h the canaliculi)and contact othe xpress CD44, osteocalcin and a is-to cytoplasm ratio, er organelles , H (release calcium) licitonion (do not release calcium) licitonion (do not release calcium) control (do not release calcium)	 6. PTH stimulates function. The surface on the bone matrix contains multiple invaginations known as the ruffled border. Attach to bone surfaces via a receptor: integrin Move along the bone surface by pseudopodia (like amoebae) Average life span is 10-14 days. Large size 20-100µm Osteoclasts proliferation is stimulated by TNF-α Proinflammatory cytokins are also involved in tumour bone resorption, infection, and prosthetic loosening Receptors: calcitonion, estrogen, IL-1, RANK L, Inhibited by bisphosphonates 			
Stimulation	ion Weight-bearing activity Growth Fluoride Intermittent PTH/PTHrP (<i>PTH release hormon</i>) Ultrasound				Lack of weight-bearing activity Hyperparathyroidism(high PTH) Hypercortisolism Hyperthyroidism Oestrogen deficiency Testosterone deficiency	Acidocis Myeloma Lymphoma Inadequate Ca intake Normal aging		
Inhibition	on Lack of weight bearing activity Alcoholism Chronic disease Normal aging Hypercortisolism				Weight bearing activity Estrogen Testosterone Bisphosphonate Calcitonin	Adequate Vit D intake Adequate Ca intake		
Bone function Bone forms 1.serves as attachment sites for Long bones:			Microscopic bone types	Structural bon				
muscles1. form by enchondral clavicle): primary (in sh centres3. reservoir for minerals in the body: 99% of body's calcium stored as hydroxyapatite crystals 4. Hematopoiesis site.1. form by enchondral clavicle): primary (in sh centres 2. have physes (growth where it grows in lengt metatarsals, and phala typically have only one 3. 3 parts of long bone * Diaphysis: shaft, ma		Long bones: 1. form by enchondral ossific clavicle): primary (in shaft) sec centres 2. have physes (growth plate where it grows in length (me metatarsals, and phalanges of typically have only one physi 3. 3 parts of long bone: * Diaphysis: shaft, made of bone, filled with bone marro	secondary growth tes) at each end etacarpals, of hand and feet isform 1m after birth, by 4y.o most normal bone is lamellar) - A thin plate of bone, highly organized with stress orientation (collagen fibres in parallel)- composed of interstitial lam - has 4 times t trabecular bor for cellular activ - remodelling - e.g. found in the composed of interstitial lam - has 4 times t trabecular bor for cellular activ - remodelling - e.g. found in the composed of interstitial lam - has 4 times t trabecular bor for cellular activ - remodelling - e.g. found in the composed of interstitial lam - has 4 times t trabecular bor for cellular activ - remodelling - e.g. found in the composed of interstitial lam - has 4 times t trabecular bor for cellular activ - remodelling - e.g. found in the composed of interstitial lam - has 4 times t trabecular bor for cellular activ - remodelling - e.g. found in the composed of interstitial lam - has 4 times t trabecular bor for cellular activ - remodelling - e.g. found in the composed of interstitial lam - has 4 times t trabecular bor for cellular activ - remodelling - e.g. found in the composed of trabecular bor the composed of trabecular bor trabecular bor the composed of trabecular bor trabecular bor trabecular bor the composed of <br< td=""><td colspan="2">nse outer coating of bone (80% of the skeleton) d of multiple osteons (Haversion systems) with intervening lamellae. es the mass of trabecular bone, but metabolic turnover of bone is 8 times greater (<i>due to extraordinarily high surface area</i></td></br<>		nse outer coating of bone (80% of the skeleton) d of multiple osteons (Haversion systems) with intervening lamellae. es the mass of trabecular bone, but metabolic turnover of bone is 8 times greater (<i>due to extraordinarily high surface area</i>			

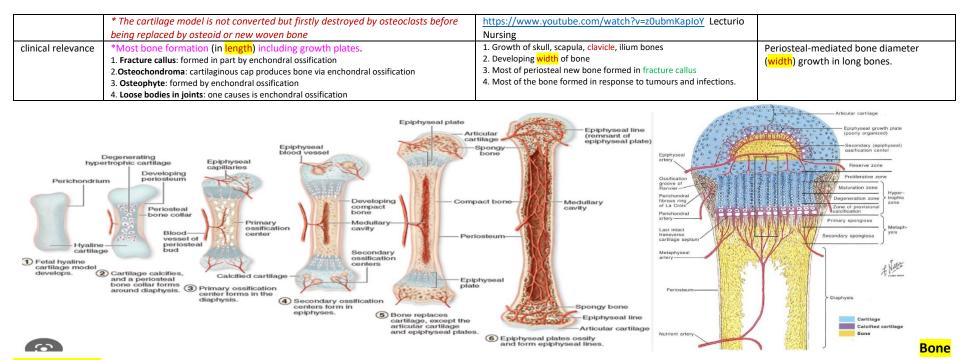
Bone is composed of multiple	1) Calcium hydroxyapatite	Approximately 5% of bone	1) Collagen: Type 1 collagen is the main collagen in bone	
components:	(Ca10(PO4)6(OH)2): 羟磷灰石 primary	weight (varies with age	 gives tensile strength (90%). 	
- organic phase,	mineral in bone. Add compressive	and location)	- Mineralization occurs at ends (hole zones) and along sides (pores)	
- inorganic,	strength. Plate-like crystal, 20-80nm long, 2-		of the collagen fibres	
- water	5nm thick.		2) Proteoglycans: Gives bone compressive strength.	
			3) Noncollagen proteins:	
	2) Osteocalcium phosphate: Is a		-Osteocalcin # 1, is indicator of increased bone turnover (e.g. Paget'	
	secondary/minor mineral in bone		disease).	
			- Osteonectin,	
	3) Small amounts of: Mg, Na, K,		- osteopontin.	
	Fluoride, Chloride.		4) Cells(2%) Osteoblasts, osteocytes, osteoclasts	

Blood supply: 3 main groups	Lymphatics	Osteon(骨单位)	Types of lamellae
1. Nutrient vessels (enters diaphysis of a long bone	Difficult to demonstrate.	the fundamental functional unit of cortical bone	- concentric lamellar (around the central canal of each osteon)
within medullary cavity $ ightarrow$ ascending and descending branches	Probably runs with <i>periosteal blood</i>	 Oriented in the long bone axis of the bone 	- interstitial lamella
2. Arteries to metaphyseal and epiphyseal	vessels	- It is an irregular, branching, and anastomosing cylinder	- Inner or outer circumferential lamellae (wrap around the entire bone)
regions	Innervation	composed of a more or less centrally placed	https://www.youtube.com/watch?v=H1LakKZjD60 Osteon OxyMMBS
3. Periosteal arteries:	Periosteum, cortex, trabecular bone	neurovascular canal (Haversian canal)surrounded by cell-	
	all innervated.	permeated layers of bone matrix (lamellar plate)	Structure of Cortical (Compact) Bone Subperiosteal outer
Clinical relevance	Anatomy of the physis	Haversian canal: centrally at each osteon, contains blood	circumiseential lamellae medullary (marrow) cavity Periosteum Periosteum
1) Osteomyelitis: nonviable cortical or	- The physis provides longitudinal	vessels, nerves (central canal)	Interstitial lamellae
cancellous bone as the focus for bacterial	growth in long bones	Volkmann's canals: perforating at right angle to central	Capitaries in haversion canals
adherence.	- 4 zones	Lacunae: house osteocytes	Capitaries in Volkmann's canals
2) Posttraumatic osteonecrosis: acute	1) Reserve zone	Canaliculi: connect lacunae; orientated in a radial	Periosteal vessels
disruption of the arterial blood supply, when	2) Proliferative zone	fashion; contains processes of osteocytes;	Nutrient artery
epiphyseal arteries cannot rapidly be	3) Hypertrophic zone	Cement lines: distinct, basophilic regions visible on H& E	or disphysis Concentric tarrellae of secondary
recanalized, produces trabecular weakening	4) Metaphysis	staining, indicating where resorption was completed, and	Usteon (havensian system) Inner Circumerender annersau Ostensyste cell bordy within facuna
and microfracture.	5) Other	bone formation began.	Within canalical iconvert lawellag: Censer line (marks end of oution It is where obtained to how reap
 Prosthetic joint devices/external fixation 		Resting lines: Linear area of basophilla where	tura stopped and new bone formation begin. Oldest bone in the cateon
devices/ bone plates affect both the endosteal	Periosteum: thin membrane covers outer	osteogenesis is thought to recommence after a period of	Diagram of outeon thaveralan system with concentric lamellae
supply, and the periosteal surface	surface of shaft,	local quiescence.	thread country
4) Fracture of bone (esp. high-energy	endosteum: walls of marrow cavity covered	Sharpey's fibre: Section of decalcified bone shows	
trauma) $ ightarrow$ ischemic fragments - $ ightarrow$ susceptible	by the membrane	attachment of periosteum to bone by perforating fibres	
to infection.		called Sharpey's fibre.	

Growth plate histology (Physis)

* The physis provides longitudinal growth in long bones.

* There is another physis in each epiphysis (similar organization). Responsible for epiphyseal growth (not longitudinal).


Zone structure	Histology	Function	Cells feature	Other features	Proteoglycans in matrix	Examplary disease
Secondary bone epiphysis						
Reserve zone (superficial zone)		Matrix production, Storage metabolites	Vessels passing through but does not supply it; Chondrocytes do not proliferate	Loosely organized cell produce		Diastrophic dwarfism Pseudoachondroplasia Kneist syndrome
Proliferative Z. 生发层		Matrix production Cellular proliferation	-Cells are flattened and -aligned in longitudinal columns; - Chondrocytes actively divide,	Cells in column		Achondroplasia
Maturation zone 成熟区			Cells are spheric and greatly enlarged.			

	Degenerative zone 退化区	A Providence	Preparation of matrix for calcification				
	Zone of provisional calcification		Calcification of matrix	- Cells are bigger - Cell become vacuolated (<i>有空泡的</i>) and undergo apoptosis	- Undergo calcification Radiographically dense zone	Agregated proteoglycans (neutral mucopolysaccharides) inhibit calcification	Rickets, osteomalacia
罪	Primary spongiosa		Vascular invasion and resorption of transverse septa; Bone formation	-heterogeneous mix of calcified matrix, osteoid and immature bone	Osteoblasts make immature (woven)bone on the calcified cartilage		Metaphyseal chondrodysplasia Acute hematogenous osteomyelitis
Metaphysis 干骺	Secondary spongiosa		Remodelling— Internal: External:	Remodelling replaces primary spongiosa with mature lamellar trabecular bone	Osteoclasts remove cartilage & immature bonoe		Osteopetrosis Osteogenesis imperfecta Scurvy Metaphyseal dysplasia

Bone formation

4 situations that bones form: 1) Embryological and foetal development 2) Bone growth. 3) Bone remodelling, 4) Fracture healing

bone formation	Endochondral (软骨内成骨)	Intramembranous (膜内成骨)	Appositional growth
Definition	Bone formation from a pre-existing hyaline cartilage model	Bone formation without an intervening cartilaginous step	Growth in the thickness of long bones
	* typical in long bones (except clavicle)	Osteoblasts lay down bone directly into fibrous tissue, with no	where bone is formed at the periosteum
	*Cartilage precursors formation in the 6 th wks of IU life	cartilage precursor)	Surface by osteoblast, and bone resorbed
	*Primary centres of ossification formation in week 8.	* In utero before 8 th weeks	by osteoclasts at the inner layer of a bone
	* Secondary centres of ossification formation: after birth		
Mechanism	Mineralization front (MF):	Mesenchymal cell 间叶细胞 differentiate into osteoblasts,	-Occurs via perichondrium
	- osteoblasts produce <i>osteoid</i> → mineralises ~10y later.	which produce bone	-A cuff of tissue characterized by
	- a basophilic linear line		mesenchymal cell growth and
	- Substances that bind at the MF may cause pathological states (e.g. aluminium		differentiation.
	induced osteomalacia in pts on dialysis) or iron induced osteomalacia in		
	hyperchromatosis		
	-fluoride binds at MF and makes bone less susceptible to resorption		
Marker	Cbfa1, osteocalcin, osteopontin, bone sialoprotein		
Steps	<mark>1)</mark> Cartilage enlarges, then chondrocytes die (<i>先增大再死亡</i>)	 development of ossification centre 	
	2) Blood vessels grow into perichondrium, cells convert to osteoblasts, shaft	 cells differentiate into osteoblasts secretes ECM 	
	becomes covered with periosteal collar	(collagen fibres)	
	3) More blood supply and osteoblasts produces spongy bone, formation spreads	2) Calcification	
	on shaft (先吸收软骨模型再造编织骨)	- Osteoblasts are surrounded by ECM $ ightarrow$ deferrentiate into	
	4) Osteoclasts creates medullary cavity, appositional growth	osteocytes \rightarrow lacunae	
	5) Epiphysis centres calcify, blood and osteoblasts move in, secondary ossification	 Formation of trabeculae 	
	centres	- trabeculae start to form. Blood vessels infiltration.	
	6) Epiphysis filled with spongy bone; cartilage remain at joints; epiphyseal plate in	4) Development of periosteum	
	metaphysis	- Fibrous periosteum formed. Red marrow tissue fill spongy	
		bone	

mineralization

2 phases	Initial mineralization	* Matrix vesicles develop in chondrocytes and osteoblasts	paediatric elbow ossification sequence
1) formation of initial mineral deposits at multiple discrete	 increases in the local concentration of 	(contain calcium and inorganic phosphate ions, initiate HA	C: capitellum (2)
sites (Initiation)	precipitating ions	formation)	R: Radial head (4)
2) proliferation of additional mineral crystals on the initial	- Formation or exposure of mineral nucleator	* These matrix vesicles are extruded	I: Medial (Internal) epicondyle (6)
mineral deposits (growth)	- removal or modification of mineralisation	* Sulfated and /or phosphorylated proteins act as	T: Trochlear (8)
https://www.youtube.com/watch?v=Eq9QD9ZWGNw	inhibitors	stimulators or nucleators of crystal formation	O: Olecranon (10)
mineralisation		* Matrix vesicles also contain MMPs, responsible for	L: lateral epicondyle (External) (12)
		matrix breakdown/turnover.	

Bone healing, remodelling

Fracture healing 5 phases	Bone healing type	Bone modelling and remodelling	Type of remodelling
1. Haematoma: bone at fracture surfaces is avascular and	1. Nonstabilised fractures	Definition: The process of bone modelling and	Physiologic remodelling
dies back 1-2 mm	 Mesenchymal cell condensation 	remodelling require osteoclastic resorption of bone	- Does not change bone shape and consists of
	 Chondrogenesis with Type II collagen 	matrix and deposition of a new matrix by osteoblasts.	bone resorption and deposition in
2. Inflammatory reaction: with proliferation of cells begins	expression	(begins early in embryogenesis)	approximately the same location.
within 8 hours. Haematoma is absorbed as new capillaries	 Cbfa1. Osteocalcin, endochondral 		- This type of bone turnover occurs throughout
grow into the area	ossification	Bone remodelling units (BMUs):	life and is important for homeostasis and
		The (small, discrete, microscopically identifiable) unit of	maintenance of the skeleton.
3. Callus formation: cells brought in by the new blood	2. Stabilised fractures	osteoclasts breaking down bone and osteoblasts	- Surface phenomenon (occurs on periosteal,
vessels differentiate to begin producing a mass of immature	 No expression of cartilage specific genes 	laying down bone (coupled bone resorption/formation)	endosteal, harversian canal, trabecular
(woven) bone and cartilage which bridges the fracture and	 Healing by intramembranous ossification. 	1) Does not cause net changes in the shape of bone.	surfaces)
progressively decreases movement until the fracture unites			

	Wolff's law	2) Bone loss: endocortical thinning, 个porosity,	- Rate of cortical bone remodeling up to 50%/y
4. Consolidation: the woven bone is transformed into	* Galileo observed correlation between	trabecular bone loss.	in the midshaft of the femur during first 2 yr of
mature(lamellar)bone by the action of osteoclasts and	body weight and activity and bone	3) 4 stages: activation, resorption, reversal, formation.	life \rightarrow 2%-5% per year in healthy elderly
osteoblasts forming a solid bridge of mature bone which	architecture.	4) Occurs on open bone surface (periosteal, endocortical,	
can take normal loads	* Bone is a dynamic tissue that modulates its	or trabecular)	Adaptive remodelling
	external and internal structure throughout		- is the response of the bone to altered loads
5. Remodelling: Over months or years the bone is	life (sensitive to mechanical and systemic cues)	BMUs are influenced by	and may alter the strength density and shape
remodelled in response to mechanical stress to resemble its	* 2 categories of metabolic processes:	Systemic factors:	of the bone.
original shape, and the medullary canal is reformed.	formation and resorption (modelling and	- dietary intake of Ca, and protein	
	remodelling)	- exercise (loading \uparrow bone mass, decrease loading \downarrow mass)	https://www.youtube.com/watch?v=Ei4seya3dOg
		- hormones: E, Corticosteroids, PTH, Calcitonin, VitD, growth	Bone remodelling and repair: Osmosis from Elsevier
		hormone.	
		Local factors	
		- Mechanical and electrical stimuli	
		- Bone matrix macromolecules	
		- Prostaglandins	
		- bone growth factors	

Regulators of bone

Cells		Cellular	Other factors		Non union or delayed union
Osteoblast: secrete IL6 a	nd IL11→stimulate	Mediators of Cell Attachment	Osteoconduction:		* Occurs secondary to imbalance
OCs to degrade bone matrix		- Mediators of osteoclast attachment to bone:	- Process by which the graft acts ass scaffold to promote		between the catabolic and anabolic
Inhibitors of OB - Osteocalcin - Leptin - HoxA2 - TGFb	Stimulators of OB -PTH -1,25 Vit D	 * Osteopontin, bone sialoprotein - Collagen organisers * COMP mutations result in 2 disorders a) EDM1 (Form of multiple epiphyseal dysplsia) b) pseudoachrondroplasia Delta carboxylic acid containing proteins e.g. osteocalcin * Made by osteoblasts, not osteoclasts * Metabolised in renal tubule * used as marker for some bone disease \$ Increased in growth spurts, puberty, Pagets \$ higher in osteoblastic breast mets than in osteolytic breast cancer * Level rise rapidly in response to calcitriol * Vit K is essential cofactor in synthesis. (Vit K antagonist in 1st trimester may result in bone defects) 	matrix) Osteoinduction -Material contains facto induction of stem cells of - e.g.BMPS are members of superfamily and are involve repair. BMP2 and BMP7 are Osteogenesis - Material directly provid including primitive meser osteocytes. - e.g. autograft. - Mesenchymal stem cells	 des cells that twill produce bone <i>nchymal stem cells, osteoblasts, and</i> differentiate down any cell line OB, then OC. reater ability than cortical bone to 	responses to bone healing. - Anabolic: forms bone -Catabolic: removes the bone *non/delayed union due to - anabolic deficiency or - catabolic excess * Hypertrophic non union: Results in abundant callus formation but the mechanical environment is not conducive to union due to excessive mobility at the fracture site - Tx: improve mechanical stability; bone grafting is not required) * Atrophic non union
Osteoclast: normal fate is	apoptosis	MMPs	Factors that detrimentally affect bone healing		Occurs secondary to inadequate metabolic response (e.g. impaired blood
 F. ↓ bone resorption oestrogens Bisphosphonate →osteoclast apoptosis 	F ↑ bone resorption → inhibit OCs apoptosis	 MMP 9 associated with bone degradation MMP 1,3,13 associated with arthritis 	- Biological factors Age Nutrition Blood supply Smoking Severity of injury	-Mechanical factors Stability Soft-tissue interposition Separation of fragments	supply) - Treatment: optimizing the biological environment (bone grafting) (combination of osteo- conduction, induction genesis)

 Definition
 Character of Cartilage
 3 major types of cartilage
 Cross section of HAC: 4 zones

- the most abundant mammalian pr.	1) Avascular: (diffusion of	Unaline	Elastic	Fibrous						<u></u>
- a form of connective tissue	substance from blood vessels to	Hyaline Articular c.	Elastic Ear(Pinna)	IVD		~	Articular hyali			
- Originated from mesenchymal stem	maintain viability)	Growth plt	Epiqlottis	Meniscus	Lamina splendens	Histolog	y (H and E)	Orienta	ation of collagen fibers	Zone I Tangential
cell	2) Aneural	Nose,	Eustachian	Articular discs in		5		300	Chille And	
	3) Alymphataic	Larynx	Т	SCJ, TMJ		-	000	- 828	K Stran	Zone II Oblique
- Collagen is formed by the <i>helical</i>	4) limited potential for self-	Trachea		Labrum (GH, Hip)	Matrix-	5000		. 100	STAXIN STAT	
intertwining of 3 protein chains (alpha	,	Bronchi		Pubic symphysis		~	6	ANNA	X X MANDA ANY M	
chain)	repair.	Costal cart.				0/0	00	- WWW	NX WAYNAXY	
- 5 major types:	5) Large ratio of GAGs: type II	fetal bone			Chondrocytes	000	0, 00	< MAAAA	MONIVAL KALINAVIA	Zone III Vertical
a) Hyaline	collagen (to allow above diffusion)	Type II	Type II	Type <mark>I</mark>	in accinac	100		anna 11		Vertical
b) Elastic		1.Transmit load	Flexible	1.Load bearing		Se .	• •	· MANY	ATHONNE (18 PANIE X)	
c) Fibrocartilage	Mechanical properties depend	(static, dynamic) 2 Low friction in	support	2 Shock absorbing		•	·	MIAA	ATTAC MALLAR	
d) Growth plate	on ECM	joint (Coefficient		3.Attach tendons	Tidemark —	DO	0			
f) Fibroelastic (menisci, intervertebral		0.001)		to bone	Calcified cartilage —	0		1. 1. 18	不得我们被罚了(3)。	Zone IV Vertical
discs)	HAC is a viscoelastic solid	 Structural support fetal skeletal 			cartilage	-	•	NA K	山口行利的方法。	venical
Major component of cartilage	Aggrecans trap and hold large	* Type I: 2 alpha 1 +	1 alpha 2 chain		Subchondral	12 100	- Course		Concerning and the second	-End plate
1) Cell (chondrocytes, chondroblasts)	amount of H2O	* Type II: 3 alpha1 ch				h	SAAN -		SHANNY	bone
2) ECM (95% of volume)	1) swelling pressure is	- type II. 3 dipild1 Cl								
- Water: 65% deep zones; 80%	controlled by the <i>tensile</i>	Hyaluronic acid	We wanter	Monomer	https://ww	w.youtube.cor	m/watch?v=9g0	TG249B	DI Nabil ebraheim	
surface (large PG water trapping)	strength of the collagen		A HANNA	HH-	I					
- collagen 15% (resist tension; Type II	network $ ightarrow$ control the shape	IN A LINE ALANA	*	Interstitial fluid		Other name	Chondrocytes (Cells	Fibres	PG or H2O
most common)	and form of the HCA	HANKAR Wilson I	HARAN D	Collagen fibril	Zone I	Superficial z	Elongated and		Type II collagen	rich in collagen,
- PG 15% (weak in shear, heavily	2) Permeability and				(10-20%)	Tangential zone	flattened		fibril, parallel to	H2O, poorer in PG
hydrated, adapted to bear weight)	compressive stiffness is	State and a state of the state	HUNDRED F	Attached monomer		zone			the surface	PG
nyuruteu, uuupteu to beur weight)	controlled by the water content	a such se	We wild have a		Zone II	Transitional z Oblique zone	Round		Less organized,	
	(If lose PG, the H2O content	***	XX		(40-60%)	Oblique zone			oblique	
	increase \rightarrow HAC becomes less stiff &	ATA			7	Deep z	Casall as used it		orientation	Rich PG, low
Water (~65%)	permeable \rightarrow more compressible \rightarrow	/	40 1111.		Zone III (30-40%)	Vertical zone	Small round, in columns perpendi		Between columns, perpendicular to	H2O
(~65%)	failure)				(30-40%)		to surface	cului	joint surface	H20
		The main function	n of the collage	en e	Tidemark:	Heavily calcifi	ied line btw Zone l	ll and Zo	one IV. (blue line with H	IF stain)
		-Contribute tensil	e strength and	1	Zone IV	Calcified z	Small cell. In ar		Calcified matrix,	L Stanij
		- form the articula	r cartilage		2011011	Vertical zone	renewal, cell m		calcinea matrix,	
Arocate			Ū				from this zone			
chonel Colles advertin		Light microscopy	of HCA: smoo	th and			joint surface			
(~15% (a1[II]) Prose nis and		homogeneous			Macroscop	ic anatomy of	synovial joints			
In zone I)		Electron microsco	pv : Consists o	of a meshwork of	1) The articul	ar surfaces (AS)	are covered with I	nyaline c	artilage.	
		collagen fibres an	• •		2) Between t	ne AS is a joint c	avity filled with sy	novial flu	uid +/- articular disc (/	Aeniscus)
								capsule	, lined by synovial me	mbrane (apart from
						rfaces covered by h				
									stretches, and pain	
									the joint and nourishes lled by muscles, ligame	
					articulating b		by ligaments, KON		neu by muscles, ligame	ints, shape of the
Articular cartilage injury causes	3 types of injuries	Response by artic	ular cartilage	to these injuries	Extrinsic re		T	Intrinci	ic repair	
1) Repetitive & prolonged joint	1) Microdamage to cells, matrix	1)chondrocyte dea	-	to these injunes		n from subcho			nt in vivo investigati	on (MARS
· · · · ·	· · ·	, ,		of the ECM	marrow					
overloading Sudden impact forces 	2) Macroscopic disruption to	2)Loss of chondro				ting of			ex all resolution syst	, .
· ·	the HAC (chondral fracture)	-weakening of the		.ure,	2) Free graf	-		•	ater capacity for int	
3) High sheer stress at the subchondral	3) Fractures of both HAC &	- loss of proteogly				ular cartilage			aditionally believed	
junction	underlying subchondral bone	- Increase in water			- Periosteu				ble and is person sp	
	(osteochondral fractures)	load carrying capa	,		-Perichono			- better	r in younger males a	ind temale >65.
		→progressive dan	nage and brea	kaown.		I chondrocytes				
					biodegrada	ble scaffold(st	tem cell inj.)			
				<mark>ity to intrinsic repair</mark>						
		(due to the avasc	ular, no inflam	matory response)						

Cartilage cells

	Chondrocyte	Chondroblast	Extracellular cartilage matrix
Definition	Arise from undifferentiated mesenchymal stem cell		Maintenance of ECM depends on chondrocytes balancing
Function	 Cartilage production Type II collagen production Proteoglycan synthesis 	Endoplasmic reticulum Chondroblast Lysosomes Core protein Mitochondrion Golgi apparatus	 synthesis of matrix components Their incorporation into the matrix the component's degradation and release from the
Features	 Produce ECM: 2 major pathways Endochondral calcification pathway (cells undergo maturation, hypertrophy and matrix calcification) Non endochondral calcification: cells are relatively quiescent and carry out load bearing and structural function Chondrocyte metabolism Chondrocytes have high metabolic rates Principally on anaerobic pathways for metabolism 	binding region keratan sulfate-rich region Hyaluronic acid Link protein Each component synthesized separately in endoplasmic reliculum and transported out of chondroblast via Golgi apparatus for assembly into giant aggregated proteoglycan molecule of cartilage matrix	cartilage Controlling factors include - Soluble mediators (Growth factors, interleukins) - matrix composition - Mechanical loads - Hydrostatic pressure changes - Electric field changes

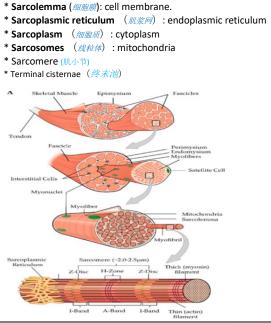
Synovial Membrane

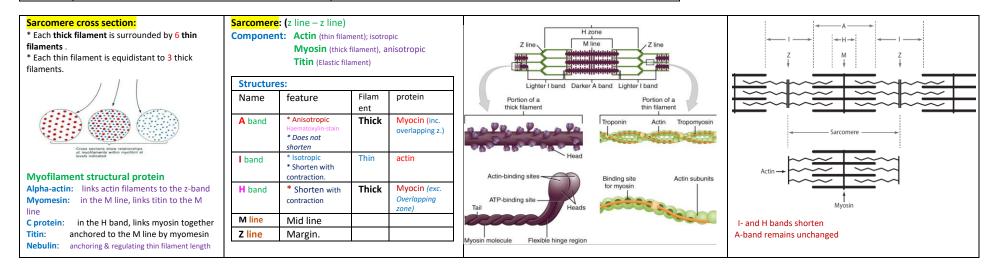
	Synovium	Type A cell (M cell)	Type B cell (F cell)
Definition	Is a vascular mesenchymal tissue lining all diarthrodial joints	Originate from monocytes with prominent	Probably derived from fibroblasts
		lysosomes	
Function	Produces synovial joint fluid (secrete hyaluronic acid and protein)	Resembling a macrophage: phagocytic	Resembling a fibroblast: Secretory
	Supplier of nutrition		Secrete prostaglandins, collagenase and hyaluronic
	Remover of debris		acid
Features	1) It contains multiple villi that increases the effective surface area of the tissue	Lie closest to the joint lining	Rich in rough endoplasmic reticular
	2) The internal surface is lined by 2 parallel lines of cells		
	3) The deeper layer consists of loose fatty CT (with varying fibrous elements)		
	4) There is a rich supply of blood vessels and lymphatics		
	5) Unmyelinated nerve (nociceptive) fibres extend into the adventria of the blood		
	vessels only		

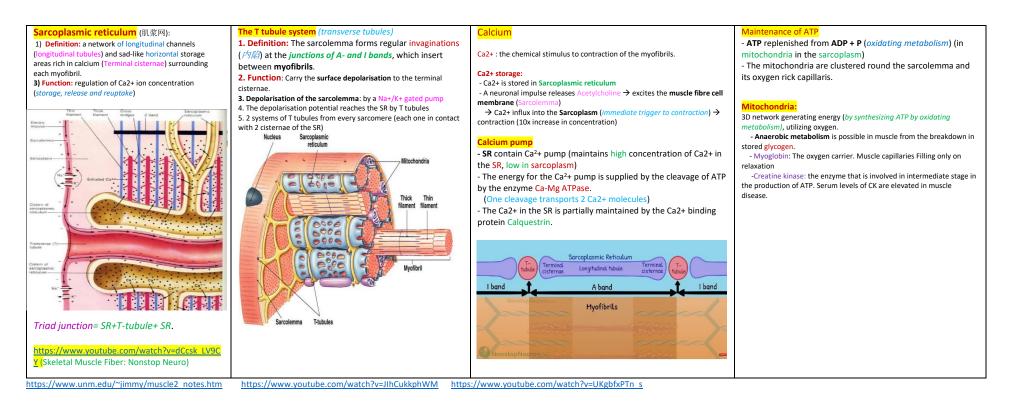
	Meniscus	Synovial fluid	Lubrication of synovial joints	Type of lubrication: 1) Boundary 2) Fluid film
Features	Majority of Type I Circumferential: Majority; resist compressive force Radial fibres: only in superficial 25%; resist shear forces Fluid filled clefts: seen in inner meniscus is normal.	 - an ultra filtrate from plasma - high viscosity (variable but generally high) - Clear colourless /straw colored low volume (<3.5ml in knee) - Composition: HLA, lubricin, proteases, collagenase, <200 wbc/mm3, <25% plolys and phagocytes 	3 components 1) Lubricin 2) Surface active phospholipids 3) Hyaluronic acid	1) Boundary: - achieved by the shearing of surface molecules e.g.lubricin, absorbed onto the cartilage surface - Occurs when the opposing articular surfaces come into contact creating contact asperities; Or when the fluid film is depleted under severe loading conditions. - low joint loads
Function/ Others	Joint stiffness is Measured in terms - frictional resistance, -viscous drag of synovial fluid, - - elastic forces from tissue elasticity - Inertial stiffness - Plastic or visco-elastic stiffness	 Reduction of friction by lubricating the articular surfaces Shock absorption (rapidly increasing its viscosity when load applied) Nutrient and waste transportation 	Lubricin - the superficial zone protein - Is a proteoglycan synthesized by superficial layer chondrocytes and B cells of synovium - contributes to boundary lubrication by facilitating low friction levels	 2) Fluid-Film lubrication (<i>high joint loads</i>) (by the interposition of a viscous fluid between the bone end Hydrodynamic (non-// surfaces) Squeeze-film (L surfaces): 2 surfaces don't slide, lubricant squeezes laterally. elastohydrodynamic

- Joint capsule 46%	 4) Phagocytosis of microbes and debris from wear and tear 5) Molecular sieving 	 Has chondroprotective properties Regulated by cytokines and growth factors 	3 <mark>) Mixed lubrication</mark> - Boundary- Fluid-film - Boosted
---------------------	---	---	---

Muscle

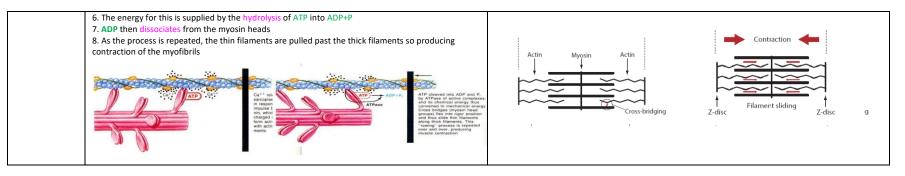

Muscle characteristics: 1) Excitable, 2) Contractile. 3) Extensible(stretchable) 4) Elastic.

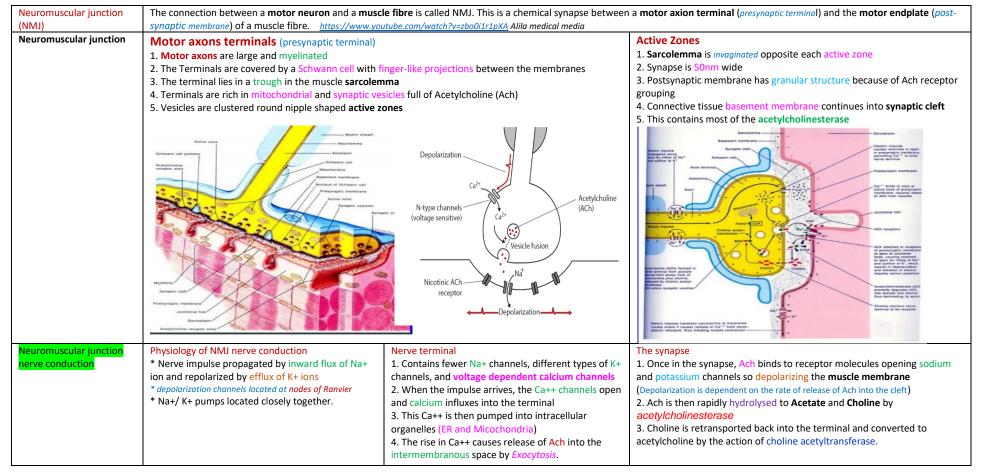

Muscle function: 1) Producing movement. 2) Posture. 3) Stabilize joints. 4) Produce or generate heat.


Smooth muscle:1) lack of cross-striated banding pattern; neither troponin nor T tubules. Neither myofibrils nor sarcomeres. Innervated by nerve derived from the autonomic nervous system (contract spontaneously);

Cardiac muscle: Much shorter fibres. Long refractory period (avoid tetanus in heart).

Structure and biomechanics **Skeletal Muscle** Level 1 Epimysium (肌外膜): Surrounds the muscle- sheath fuses with the tendon; * Mesodermal oriain Dense irreaular CT. Perimysium (肌束膜) surrounds a bundle of cells: Dense, irregular CT Level 2 Fascicle (肌束) * the smallest unit of structure visible to the naked eve. Level 3 Myofiber /cell (肌纤维) Endomysium (肌内膜) surround a single cell (muscle cell) (muscle cells are the largest cells in the human body) * Multinucleated cells - areola connective tissue (less tough, less collagen) * Derived from embryonic fusion of myoblasts - Contains capillaries and nerves * Mature cells are known as **myotubes** or muscle fibres - Aids in providing an appropriate chemical environment for the exchange of Ca. Na, * vary in size and length btw sexes, muscle groups К * Individual fibres span the full length of the muscle they form. Tendo Sarcolemma (肌纤维膜) Or myolemma. Underneath endomysium. Is the phospholipid bilayer cell membrane surrounding a skeletal muscle fibre (The site of the defect in Duchenne Muscle dystrophy) Level 4 Myofibril (肌原纤维) Interstitial Cells * the contractile apparatus - 1 um diameter nsverse tubule - A string of sarcomeres arranges in series (Striated) mic Reticul - Muscle fibre grows is to increase the number of myofibrils - each myofibril is interconnected with one another by intermediate filaments - each myofibril span the entire muscle length. vel 5 Sarcoplasmic reticulum (endoplasmic reticulum) Sarcomere (肌小节) The fundamental contractile units - Degeneration, rebuilding of the myofibrils occur in sarcomere units 2-2.5 μm in length, 1 μm in dimeter - e.g. adjustment of the length of a muscle immobilised in a shortened condition: by the Visible under electron microscopy dissolution of a number of sarcomeres, and their replacement by a smaller number Variation along the length of the myofibril (shorter at MTJ)





Contractile protein

	Thin filaments	Thick filaments
component	Actin (Filamentous actin)	Myosin
Molecules & weight	G-actin: (globular protein) MW 40,000, 1 μm long total Troponin: MW 70,000, Lies in the grove formed by the double helix linked by thin tropomyosin molecules. - Trop I: affinity for actin; (<i>Inhibits contraction</i>) - Trop T: affinity for Tropomyosiin - Trop C: affinity for calcium ions Tropomyosin: thin molecule rod-shaped protein, spiralling around actin to stabilise it. Blocking the binding sites of the myosin head. Double helix linear structure	500,000 - 2 heavy chains \$1 segment (globular head) \$2 segment (flexible neck) -4 light chains. Essential light chain Regulatory light chain.
Structure	Double helix rod	2 filaments in alpha-helix formed by Light meromyosin 簡解肌球蛋白 Heavy meromyosin paddle at the end forms the cross-bridge .
Picture	1. Myosin-binding site (blocked by TM) 2. Ca ²¹ binds TnC 3. TM moves, exposing myosin-binding site 1. Myosin-binding sit	Myosin: Regulatory light chain Myosin heavy chain Myosin heavy chain Fiexible neck Regulatory Essential light chain State Clobular head
Cross bridge	 Cross-bridge theory: Huxley (1957) 1. Calcium ions are released from the SR into sarcoplasm and bind to the Troponin C subunits 2. <i>Tropomysin</i> changes configuration (displaces troponin I from the actin and expose <i>myosin binding sites on actin</i>) 3. Cross bridges form when ATP binds to the <i>myosin head</i> groups 4. The resultant charged unit then binds to an <i>actin</i> subunit under the influence of calcium ion 5. Movement occurs when the myosin head units <i>bend backwards</i> (pulls thin F to M line) 	https://www.youtube.com/watch?v=nTznBdelb5c sliding filament theory of muscle contraction https://www.youtube.com/watch?v=7 LZFmfeCuk Sliding filament theory Dr Matt & Dr Mike

Muscle contraction

		I	
Muscle response to stimulation	 Transmitter Release 1. The amount of transmitter (Ach) released at the end plate is sufficient to produce a muscle action potential 2. The action potential will be initiated within the muscle fibre by activation of voltage-gated Na+ channels 3. This propagates through sarcolemma deep into the fibre via the T tubules 4. Calcium ions are released synchronously to produce a 'twitch' (The tension of the twitch can be measured). 	Nerve stimulus Nerve or singlice potential Osciloscope discoscope Motential optinulus Motential optinulus Motor nerve Motor nerve Ne	Motor Synaptic I ACh released. B arcoptosmin C Active site B contraction B gins bridrig C Active site C
Twitch tension	 Single twitch is a <i>constant property</i> If a second twitch is generated before the first has relaxed, the achieved tension is <i>increased</i> If the muscle is activated at a sufficient frequency, a <i>sustained contraction</i> (tetany) result. 	Summation of Muscle Response With Progressive Frequency of Stimulation	Z band Z band
Muscle length	Effect of muscle length * Maximum tension is generated at "normal "muscle length (Sarcomere 2 μm) * When stretched prior to contraction, it contains a log of resting tension due to elastic forces in tissues. * active tension decreases as the muscle is stretched beyond its normal length.	Length-Tension relationship curve * The curve has a similar overall shape. * Final tension generated is related to the final length of muscle achieved. - Maximum tension occurs when all the cross bridges are activated (at the normal resting length) - If the muscle is too contracted, the thin filaments overlap - if it is too stretched, the thin filaments cannot access all of the myosin head groups	Normal range of contraction
АТР	Role of ATP: 1. Supply energy (actuates the walk-along action of the myosin on the actin) 2. Supply energy (maintain Ca 2+ pump at sarcoplasm/ sarcoplasmic reticulum) 3. Supply energy (maintain the Na+/K+ pump at the muscle membrane) * {ATP} of 4mmol can maintain contraction for 1-2 seconds	The Source of ATP * Generated by glycolysis and oxidative metabolism of carbohydrate and fat. * ATP is regenerated at multiple points along these metabolic pathways. * ATP is regenerated very quickly from ADP. Glycolysis 1. Glucose 6 phosphate (G6P) is derived from the phosphorylation of glucose 2. This is broken down to two molecules of Acetyl coenzyme A- A(COA) 3. During this process, 3 molecules of ATP are generated	 Kreb's Cycle 1. A(CoA) enters the <i>citric acid (Kreb's) cycle</i> in the mitochondria (线粒体) 2. This involves the reduction of oxygen to water 3. Under <i>anaerobic</i> conditions only 3 molecules are generated by this system 4. Under <i>Aerobic</i> conditions 35 molecules of ATP are formed 5. The <i>whole system is 'buffered 'by</i> Creatinine phosphate which can quickly donate a P to ADP

Efficiency	The efficiency of any 'engine' is calculated as the percentage of energy put into the system that is converted to work versus the amount converted to heat . * Maximum efficiency occurs at moderate velocity - At no velocity heat is generated without movement - At high velocity energy is required to overcome friction	Efficiency= W/E ^{total}	With muscle this is less than 20-25% - Half the energy in food is lost during the formation of ATP - Only 45% of the energy in ATP can be converted into work
Isometric contraction	Isometric contraction 1. Most often used for measuring functional characteristics of different muscle types 2.This because purely force generated is measured 3. During contraction the elastic components of the system are stretched - Tendons - Tendon attachments - Hinged arms of cross bridges 4. Muscle has to shorten an extra 3-5% to make up for this	upper solution muscle upper solution of the s	Duration of Isometric Twitches 1. Fibre size varies greatly -range 10-80 μm 2. Energetics vary from one muscle to another 3. Illustration shows the characteristic duration of contraction of 3 very different muscles - Occular muscle required to move very rapidly - Gastrocnemius required to contract moderately rapidly to walk and run - Soleus contracts slowly against gravity for body support

	Eccentric contraction	Isometric	Concentric contraction		
Definition	is the motion of an active muscle	muscle under load but do	es are used to generate motion.	eccentric isometric	
	while it lengthens under load .	not lengthen or shorten	Shortening contractions	concentric	
Force	High	Medium	Low		
Muscle length	Lengthening	No change	Shortening	lengthening shortening	
Risk of muscle injury	High		Low	Velocity	
<mark>/luscle fibre types:</mark> http	os://www.youtube.com/watch?v=EH_	Eem-VBZg		Velocity	
	Type I (S. S. R. Mito, Aero, wea	ak, FR)	Type II A (F. L. P. FR, aero & Anae)	Type II X (F. L. W. Anae. Fatig)	
Other name	Red, slow twitch, Slow oxidative (SO)		fast twitch, fast oxidative glycolytic (FOG)	Fast twitch, Fast glycolytic (FG)	
Structural	Structural * Small muscle fibre diameter, Smaller nerves, fewer muscle spindle * High capillary density→ large amount of myoglobin (red)		* larger fibre diameter	* Largest diameter fibre; More muscle spindles	
			* Red fibres	* Less extensive blood supply (White fibers)	
	* Large number of mitochondria			* Rich in glycolytic enzymes (for rapid energy release)	
	* low in glycolytic enzymes, high in oxida	ative enzymes		* Fewer mitochondria.	
				* Extensive sarcoplasmic reticulum for rapid release of Ca2+	
Metabolic	* Aerobic cellular respiration (Krebs	's; oxidative phosphorylation).	Intermediate (aerobic & anaerobic)	* Anaerobic (glycolysis)	
- speed	* Slow contractive speed (\downarrow <i>myosin</i>	ATPase → ↓hydrolysis)	Fast	* Fastest (high glycolytic enzymes)	
- fatigue	* Fatigue resistant (more energy efficient	ient)	Intermediate	* Most fatigable (inefficient energy use)	
- power	* Not very strong (low power)			* Strong (high power output over a short period of time).	
- storage	* Triglyceride			* Glycogen, creatine phosphate	
Function	* Run marathons (endurance sports	5)		* Sprinting or weightlifting: quick, powerful movement	
	* Antigravity muscle (posture musc	les)			
Motor unit	S (slow)		FR (fast fatigue resistant)	FF (Fast fatigable)	
	Slim			Bulky muscle	

* Hennemari's size principle: as force production requirements increase, motor units are recruited in order: Type I, Type II A, and Type II X.

* speed of contraction correlates with extent of development of sarcoplasmic reticulum

* Tolerance to fatigue and oxidative capacity correlates with mitochondrial content.

* A muscle fibril may express simultaneously more than one type of myosin heavy chain.

Motor units	One axon + all the fibres	Power vs control
	- neuronal cell bodies lie in the anterior horn	* Strength of contraction: dependent on the number of fibres
	- nerve fibres enter the muscle at the motor end	activated by 1 axon (e.g. in large powerful muscles, a motor unit may be up to
	plate zone.	2,000 fibres in size
	- The motor axon branches and splits many times	* Fine control: (e.g. muscles requiring fine control may have <10 fibres).
	- Each muscle fibre is innervated by only one motor	* Small motor neurons: activate small motor unites, initiate
	axon.	movements
	-all muscle fibres in the same motor unit have the	Diameter vs length of a muscle fibre
	same contractile and metabolic properties.	

	 the number of muscle fibres within a motor unit is highly variable. Muscle fibres next to each other are not usually innervated by the same parent motor neuron. Initially each developing muscle fibre is multiply innervated by several axons. Later only one axons remains the synaptic connection with the fibre 	muscle → level + * Fibre length which the fibr All-or non-ph * a single con * Activity of a * Contraction	etermines its strength (altered fibre diameter in mature of muscle use has changed). In influence fibre contraction velocity, distance over re can shorten. Internet of an individual fibre is an all-or-non of motor neuron \rightarrow activation of the whole MU of a whole muscle is dependent on the number of , and the size of those motor MU.	the second
Summation	* The adding together of individual twitch contractions to increase the intensity of overall contraction.	firing) 1. Weak nerve s 2. Larger units a 3. These can be 4. This allows th 5. Small units at the cord are more	e summation (increases the no. of motor unites signals stimulate <i>small</i> motor units first are excited as the signal becomes stronger e up to 50 x stronger than the smallest units ne gradation of muscle force in very small steps re driven by smaller nerve fibres and smaller neurons in ore excitable and fire first t motor units are driven asynchronously by the cord .	 Frequency Summation (increase the frequency of contraction) 1. Low frequency of stimulation produces individual twitches 2. As frequency increases each new contraction occurs a little before the previous one has finished 3. After a critical level they fuse together to form one smooth contraction- Tetonisation 4. When contraction reaches its maximum, there is enough calcium in the sarcoplasm to maintain this 5. Maximum force is 3-4 kg per square centimetre 6. Strength shows a staircase phenomenon over 10-50 twitches
Muscle tone and fatigue	Resting muscle tone is a function of mainly spinal cord intrinsic activity and feedback from the muscle spindles Prolonged contraction leads to fatigue 3. Fatigue rises in direct proportion to the depletion of muscle glycogen levels 4. Transmission at the NMJ may also drop off.	The periphera The sensitivit	is determined by reflex firing of motor units on stretor al receptor for this monosynaptic reflex : 1) muscle s y of these peripheral receptors is controlled by the gamma efferent fusimotor fibres is controlled b	spindles, 2) Golgi tendon organs amma motor neuron (→intrafusal fibre contraction)
Clonus	 * Clonus is involuntary and rhythmic muscle contractio (漂満) * Stretch reflex is highly sensitized by facilitatory impulses) * Clonus is a sign of certain neurological conditions, para associated with UMN lesion. * examples where the cord reflexes are highly facilitated: - clonus may be found at the ankle, patella, triceps surjaw, biceps - In decrebrate animals - Cerebral palsy, stroke, multiple sclerosis, hepatic encephalogical conditions, para associated with upper motor neurons lesions 	rticularly rae, wrist,	Mechanism 1) hyperactive stretch reflexes 2) central oscillator 3) clonus and spasticity	Patellar tendon struck Miniseconds
Muscle spasm	Reflex muscle spasm often results from noxious stimul	ation	* Muscle spasm following fracture * Abdominal muscle spasm in peritonitis * Psoas muscle spasms from appendicitis * Possibly cramps	
Cramps	 It is a very painful active contraction of a muscle in a sfashion. It begins when the susceptible muscle is in a shortened. It can usually be interrupted by stretch of the muscle be antagonists or by external forces. The muscle shows altered excitability and fasciculation minutes after resolution of the cramp. The electrical activity responsible for cramps is from a affecting the motor units (Not that individual muscle for the muscle for	d position. by its ns for many the nerve,	Causes (Not well understood) After fatigue, prolonged muscle activity Drug use/abuse night cramps in the elderly (when M is shortened renal failure Fluid and electrolyte disturbances. Peripheral vascular disease. 	e.g. Gastrocnemius, habstrings, abdominal muscles etc.

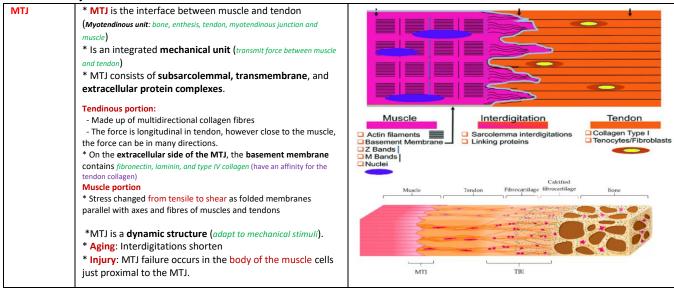
Delayed	Muscular pain that generally occurs 24-72hours after intense,	Mechanism: connective tissue breakdown	Clinical sign
muscle	prolonged exercise.	1) Result of increase in intramuscular pressure.	- Muscle pain several hours- 3 days (peak at 1 day)post
soreness	* Associated primary with eccentric exercise	2) intramuscular damage to the structural elements of the	exercise
	* varies with both the intensity and duration of the exercise	muscle (confirmed by muscle biopsies and animal models)	- reduced activity, strength loss(up to a 50% loss) up to 10d
	* Different from other pathologies due to muscle fatigues, cramps etc.	- Sarcolemma damaged accompanied by an influx of Ca2+.	-firm and swollen muscle
		- Z-band, A-band disruption, myofibril misalignment	
	* structural damage is repairable.	- Primarily occur in <i>fast-twitch glycolytic</i> (type IIB) fibres.	
		-serology studies: increased levels of intramuscular enzymes in	
		the serum after exercise (Creatinine kinase, LDH)	
		3) increased levels of urinary hydroxyproline excretion	

Muscle spindle https://www.youtube.com/watch?v=zSAdsriRSnE Muscle spindle & stretch reflex: Knee jerk reflex (Nonstop Neuro)

https://www.youtube.com/watch?v=IXV4fRC6nPc Ninja Nerd https://www.youtube.com/watch?v=wwQKSFKyD3U https://www.youtube.com/watch?v=obM1uHucAbM Muscle spindles: basic mechanism

Muscle spindles	* MS are stretch-sensitive mechanoreceptors located within	Intrafusal fibres	
•	skeletal muscle (through the belly of the muscle) and monitor the	*Central portion:	Motor Sensory Motor
(MS)	length of the muscle.	- few or no actin or myosin filament (non-contractile)	ά γ' la ll γ' 14 μm 5 μm 17 μm /8 μm/5 μm
. ,	 Detect length changes: as little as 25µm. (tonic, slow adapting) 	- contains nuclear.	
	- Detect velocity of length changes (speed, phasic, rapid adapting)	- Acts as sensory receptor	
	* Structural Features	- Stretch excites central portion fibres	
	- Striated, intrafusal muscle fibres (miniature of skeletal muscle)	a) Lengthening of the whole muscle	
	- each has a connective tissue capsule (reduces influence of external	b) Contraction of the end portions of the intrafusal fibres	Alpha motor Sheath Primary Extrafusal
	factors) that is built around 3-12 intrafusal fibres	(does not require the muscle length to change)	ending ending fibers
	- Lies In parallel to the force-producing extrafusal fibres	* End portion:	Gamma motor Fluid Secondary Intrafusal ending cavity ending fibers
	- can exceed 10mm length (3-10mm long).	- contractile (motor)	
	- Pointed at their ends,	- activated by small γ efferent fibres(α efferent fibres innervate	
	- Attached to the glycocalyx of the surrounding extrafusal fibres	extrafusal muscle)	* All motor neuron: alpha, beta (extrafusal fibre), gamma (intrafusal
	- Fewer in number than motor units (but can still be several hundred	Extrafusal fibres	<i>fibre</i>) receive input from supraspinal tracts.
	in a muscle).	- Connect with tendons	
	,	- Generate movements	
MS sensory	Primary ending (annulospiral ending)	Secondary ending (flower spray ending) – usually 1-2 but	Dynamic γ fiber , Static γ fiber . Group la fiber
endings	- In the centre of the receptor area a large sensory fibre encircles	sometimes none	(efferent) / (efferent) / (primary afferent
	the central portion of each intrafusal fibre	- Located to one side of the primary ending (or both sides)	Plate Group II fiber
	- Type la fibre of 17µm diameter, speed 70-120 m/sec (rapid)	- Type II fibres of 8 μm diameter, speed 50m/sec.	ending (secondary afferent
	- innervate both fibre types (nuclear bag & nuclear chain)	- Only innervate Chain fibres	Nuclear bag fiber
			(intrafusal muscle)
Nuclear bag &	Nuclear Bag fibres – Dynamic (bag 1 fibres), static (bag 2 fibres)	Nuclear Chain fibres	Nuclear chain fiber
Chain fibres	- 1-3 per spindle (typically 2- one of each type)	- 3-9 per spindle, ½ diameter, length of the NBF	(intrafusal muscle)
	- Large number of nuclei in expanded central bag	- Nuclei arranged in a chain	Trail ending
	- sense the onset of the stretch	- sense the sustained stretch.	
Dynamic, static	Dynamic response	Static response	Nerve la fibre II fibre γ- γ-Dynami
response	Response to the Rate of change of the receptor length.	Responsible for the static response (signals about the actual	17μm D. 8μm D. Static Plate ending
		length of the muscle)	Muscle 70-120m/s 50m/s trial Annulospiral Flower spray ending
	1) Rapid stretch $\rightarrow \uparrow$ MS Length $\rightarrow 1^{\circ}$ ending (Ia fibre) is stimulated.	* Continuous static signals/ slow stretch transmitted by both	Annulospiral Flower spray ending Dynamic Static resp.
	2) if MS length shortens \rightarrow 1° ending stimulation \downarrow	primary and secondary endings.	response
	3) When length is not changing, static response starts.	* The nuclear chain fibres and static nuclear bag fibres are	Nuclear bag
	* Only primary endings transmit the dynamic response	innervated by both 1° and 2° endings.	- Dynamic + +
	* Nuclear Bag dynamic fibres only have primary ending.	e.g. posture, maintain muscle tone.	- Static + + +
			Nuclear + + + chain
Dynamic response	Rapid lengthening→ 2 reflexes	1) Stretch reflex (e.g. deep tendon reflex):	2) Reciprocal inhibition: <i>inhibits the antagonist muscle</i> .
	-	- dynamic, static, negative	

Muscle stretch reflex - afferent -efferent e.g. knee jerk * prevent injury	The monosynaptic pathway Sudden increase of muscle length (<i>muscle stretched</i>) → the sensory signal (transmitted by Type <i>la afferent</i> fibre) enters the <i>dorsal horn</i> → One branch passes directly to the <i>anterior horn</i> motor neurons that send fibres back to the same muscle by y motor fibre(<i>This allows a reflex</i> <i>signal to be sent back to the muscle with the shortest possible delay</i>) → immediate reflex contraction of the muscle (<i>this opposes</i> <i>sudden changes in muscle length</i> → <i>prevent damage</i>) Some <i>Type II</i> fibres also relay monosynaptically Most <i>Type II</i> and many <i>la</i> collaterals terminate on multiple interneurons in the <i>gray matter</i>	Muscle Stretch Reflex Brep 1: Bretching of muscle Semulates muscle Semulates muscle Semulates muscle Semulates muscle Semulates muscle Semulates muscle Semulates muscle Semulates muscle Semulates muscle Semulates Muscle Step 3: Contraction Step 4: Activation of moder neuron
Static stretch reflex	 Occurs Immediately after the dynamic stretch reflex Comes from the continuous static receptor signals transmitted by both 1° and 2° endings 	 This <i>maintains muscle contraction</i> as long as the muscle continues to be excessively stretched. The overall muscle contraction opposes the forces responsible for the muscle stretch
Negative stretch reflex	When a muscle is suddenly shortened, impulses from Type I and II This results in reflex inhibition of muscle contraction The system therefore is important in maintaining overall muscle length	fibres are inhibited
Reciprocal inhibition	 The <i>alpha motor neuron</i> synapses with the originally stretched ske The inhibitory interneuron innervates the antagonistic muscle and This reflex <i>relaxation</i> of the <i>antagonist muscle</i> in response to contr reciprocal inhibition. 	causes inhibition Minimizes the


Motor neuron

Motor control:	Gamma: (30% of all motor fibre	s)	Alpha:	Beta:
γ, α, β	 * to intrafusal fibres * up to a dozen per muscle spin * each neuron innervates sever. * Impulses transmitted through * average diameter is 5μ (12-30) Gamma-D (dynamic) * To Nuclear bag * Plate ending 	al muscle spindles Aγ fibres	 * To extrafusal fibres. Muscle contraction * Range 10-20 μ in diameter 960-120 m/sec) * They innervate motor units of 3- 1000 fibres at a time in humans * The impulses cause depolarization of the sarcolemma and initiate muscle contraction * Summation depends on the firing rate in the axon 	 * To extrafusal and intrafusal fibres similarly to Gamma motor neurons on the intrafusal fibres stimulate extrafusal fibres directly. * 1-2 per muscle spindle * least investigated and often treated as sub-group of alpha motor neurons
α,γ coactivation	alpha, and gamma fibres are sti	d by γ motor neuron. ibre fire) int input from la fibre to spinal cord. re fire) insmitted from higher centres, both mulated simultaneously in the brain stem) \rightarrow both intra, and same time.	 Afterent input from sensory endings of muscle spindle fiber Afterent input from sensory endings of muscle spindle fiber Appla motor neuron output to regular skeletal-muscle fiber Stretch reflex pathway Gamma motor-neuron output to contractile end portions of spindle fiber Descending pathways coactivating alpha and gamma motor neurons 	 Servo-assistance * muscle contacts against load (isometric): Extrafusal fibres contract less than intrafusal fibre → stretching of the intrafusal fibres provides sensory input → extrafusal fibres to contract even more Advantages less brain input contracting against load The length of contraction becomes less load sensitive lt compensates for fatigue by eliciting additional muscle contraction when spindles are stretched.

Muscle growth and adaptation

Development	Growth: in volume and length	Immobilization Atrophy quickly	Training
- Arises from mesodermal somite tissue	- Length: sarcomere length remains constant, additional	1) reduced protein synthesis and	Adaptations to improve muscle performance.
- Progenitor: myoblasts	sarcomeres are added in series near the region of the	2) reduced hormonal contributions.	1) Motor leaning:
- myotubes: are fusiform cells (<i>multinucleated</i>	myotendinous junction.	$\rightarrow \downarrow$ muscle strength, \downarrow cross-section area,	- improve the accuracy and performance of motor skills
<pre>cells) - Contractile elements: form at the time of myotube formationFurther differentiation: Mutability of muscle fibre types * Fiber type is mutable in adults * it is dependent on the nerve innervating it. * innervating it. *</pre>	 Immobilized under stretch: increases in length (Initially the myofibrils and sarcomeres are lengthened; after a few weeks, additional sarcomeres are added). (the length-tension curve shifts to produce peak tension at a greater length, to produce less passive force when stretched) Aging muscle atrophies muscle function gradually declines decreased force production, contraction velocity, impaired relaxation Sarcopenia: degenerative loss of skeletal muscle. found in 25% of people age 65 to 79 years. 40% of older than 80 years. 	↑ fatigability (diminished energy stores and metabolic efficiency) * more pronounced if NOT stretched. * If stretched in immobilization → growth in length compensating the loss of strength. → produces less tension from stretch and maintains its extensibility Causes of atrophy: - decreased muscle stimulation - systemic illness - immobilization or bed rest Mechanism of disuse atrophy: 1) decrease in muscle protein synthesis 2) increase in muscle protein breakdown 3) Denervation Concurrent training (combine both) - negative impacts on resistance training but does not affect enduranceearly phase: strength-endurance -late phase: strength training.	 →nervous system adaptation: timing and rate of contractions. 2) Endurance training: e.g. marathon Aerobic training focuses on Train slow-twitch (type I) fibres; change type IIX to IIA, or type II to I ↑ mitochondrial number and size, Increases capillary density improve efficiency of oxidative ATP improve cardiac output AMP kinase pathway 3) strength training: e.g.weight lifting, sprinter. * High-force, low-repetition Anaerobic training, * training the fast-twitch (type II) fibre. * ↑ cross-sectional area of the muscle (hypertrohpy)(not hyperplasia inc number or cell) * improved neural activation, motor unit recruitment. * Mammalian target of rapamycin(mTOR) pathway
Muscle injury *Causes: ischaemia due to crush/ laceration Types of skeletal muscle injures 1) acute 2) overuse: chronic or exercise-induced injuries	Types of muscle injury 1) laceration: when the muscle is cut 2) contusion: when the muscle is compressed. 3) degenerative disease (e.g. Muscular Dystrophies) 4) Strain: when muscle fibres cannot withstand excessive tensile forces; Generally associated with eccentric muscle action.	Muscle strains Grade I (mild): small number of fibres tear. DMS. Grade II (moderate) Grade III (severe): complete tear/rupture of the muscle	

Muscle tendon junction

Interdigitation:

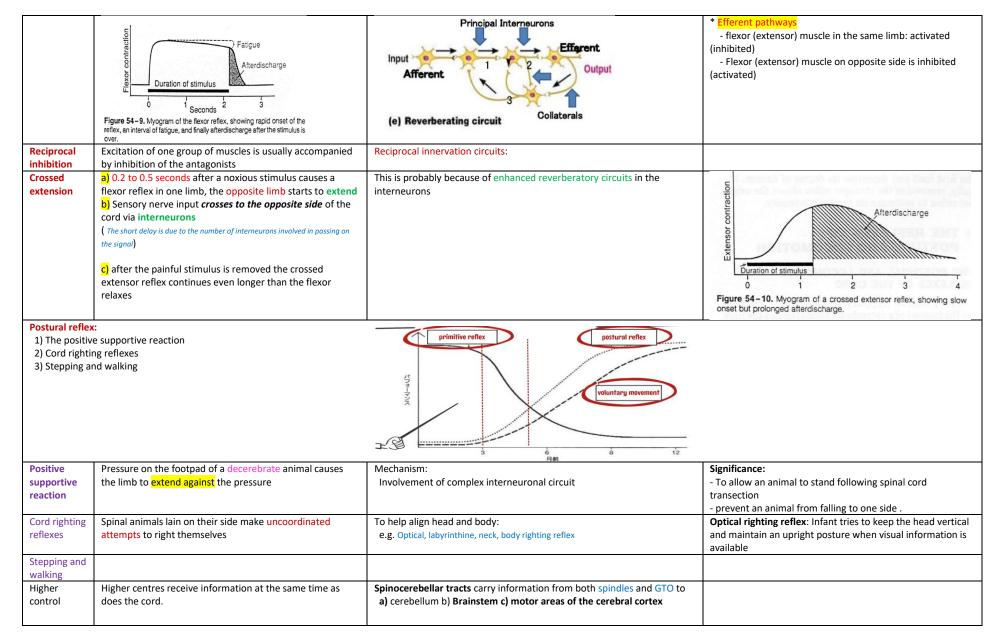
* Sarcolemma folded into finger-like extensions and invaginations (increases interface area $10-20x \rightarrow decreases$ stress) * Actin microfilaments extend from last z-line into the

plasma membrane to merge with the tendon tissue.

Protein complexes

- Actin-binding proteins bundle actin filaments together - Intracellular proteins (vinculin, talin) link the actin to the

sarcolemma. - Transmembrane protein complexes: connect the cytoskeletal


components to the basement membrane components - Proteins link the basement membrane to the surrounding collagen-rich matrix

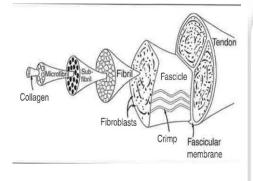
MTJ strength

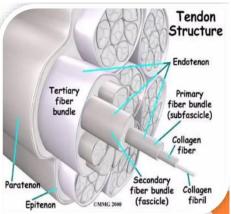
Tendon

- * Functionally the weakest part of MTU.
- * Strains and tears happen more frequently at this level (in the midsubstance of either the muscle or the tendon)
- * The muscle fibres just next to the MTJ is stiffer.

Golgi	* This is a Muscle stretch sensory receptors (Detect	Nerve fiber (16 µm)	Myelinated Naked axons with	Function of GTO
Tendon	tension)		tendon fibres nerve club-shaped endings	Equalise the contractile force of different fibres within a
organs	* It lies in the myotendinous junction (more commonly at the		Infrafusal tendon fibres	muscle
	insertion rather than the origin of the muscle) (connected to extrafusal	23 yrst		- fibres exerting excess tension are inhibited
(GTO)	muscle fibres at one end and merging into the tendon proper at the	Something		insufficientenhanced
(/	other end)	27. 20		- This spread muscle load and helps prevent local muscle damage
	* 10-15 muscle fibres (each belonging to a different motor unit) are	Tendon		
	connected in series with one GTO	- Carlos		Nerve supply: Ib type sensory nerve fibres
	* Fibres from multiple motor units \rightarrow each GTO,	Muscle Golgi tendon organ.	Tendon bundles	
	* motor unit has fibres attaching to multiple GTOs		Muscle belly	
	- The GTO have <i>neither muscle fibres</i> nor and <i>efferent</i>			
	innervation			
Golgi tendon	1. The GTO provides the sensory component of the Golgi			Example of Dynamic reflex: (inhibitory):
reflex	Tendon reflex or inverse myotatic reflex		Sensory neurons	1) Heavy weightlifting
	2. It can be activated by active contraction or by very	The Cale Tender De		The lengthening response prevents excessive tension
	strong stretch	The Golgi Tendon Ref	lex	causing injury because the muscle "gives out"
	3. Displays both dynamic and static responses		• 3	
	- Dynamic : respond to sudden increase muscle tension.	Sensory neuron conducts	÷.	2) Resistance training:
	- Static: a lower level of steady state firing that is	action potential		Acts to increase the maximum weight lifted at least partly by
	proportional to the new tension.			inhibiting the GTO.
	proportional to the new tension.	1 Golgi Tendon sense excessive tension	4	
	1) signals transmitted through a single large myelinated		Alpha motor neuron to quadriceps is	Example of Static reflex
	rapidly conducting Type Ib sensory fibre per GTO.		inhibited while the alpha motor neuron	- Relaxed muscle fibres can be stretched -> improving
		5 +	to the hamstring is stimulated	flexibility.
	(This branches, terminates as spiral endings around the collagen	The hamstring contracts		- The cerebellar inputs allow for production of only the
	strands)	and the quadriceps relax		
	Average 16µm diameter (slightly smaller than spindle la			necessary amount of tension to complete the movements \rightarrow
	fibres)			allowing smooth beginnings and endings to a movement.
	2) Sensory neurons synapse with <i>interneurons</i> in the spinal sended.			
	cord			
	- inhibitory interneuron (via glycine: IPSP's): synapse with α		Jon Dato-	
	MN back to the same Muscle \rightarrow inhibit muscle contraction Autogenic			
	Inhibition (Significance: avoid overstretching causing damage)			
	- excitatory association interneuron (via Glytamate: EPSP's):			
	synapse with α MN to antagonist muscle \rightarrow stimulate muscle			
	contraction Reciprocal Activation (Significance: relaxed muscle			
	fibres can be stretched, improving flexibility)			DRG
Withdrawal	- It is an automatic response enacted to withdraw a limb	Physiological relevance		•
reflexes	from a <i>painful stimulus</i> .	1) allows an injured or irritated part	of the body to be withdrawn from	FRA (III, IV)
(pain reflex)	- Pain stimulus \rightarrow flexor reflex \rightarrow limb withdrawal.	the nociceptive source		
	- It is a polysynaptic reflex (it uses neurons called interneurons to pass	2) because of afterdischarge, the ref	lex holds the irritated part away for	
	signals from sensory to motor neurons creating multiple synaptic connections).	as long as 1-2 seconds.		
		3) During this period the rest of the	CNS can be organized to move the	
	- Timing and duration	whole body away as appropriate.		Nociceptors
	Onset: milliseconds after stimulation	(in decerebrate animals, almost any peripheral s		
	Fatigue: in the next few seconds, the reflex begins to	https://www.youtube.com/watch?v=5c8maFAh	alc Pain physiology Armando	Commisural neuron
	fatigue	* O have the second structure		Flexor Extensor motoneuron motoneuron
	duration: does not stop immediately after the stimulus is	* 3 basic types of circuits:		Flexor motoneuron
	removed due to afterdischarge circuits (the duration of the after	- diverging circuits: spread the reflex to		Flexor
	discharge depends on the intensity of the original stimulus		it the muscles antagonistic to withdrawal.	
			etitive afterdischarge following removal of the	Extensor muscle Flexor muscle *
		stimulus.		* Painful stimulus to the hand
				* Signal transmitted to spinal cord, synapse within an
				interneuron.

Difference between muscle spindle and Golgi tendon organ.

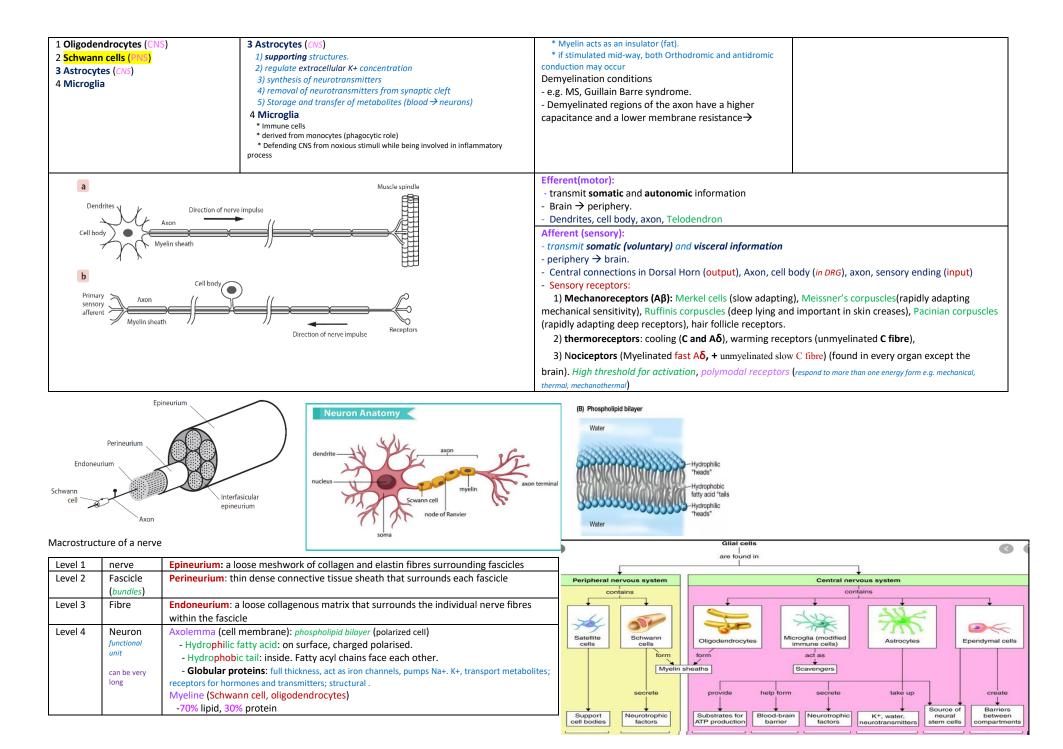

	Definition	Contraction	Sense	Nerve fibre	Protective function	Composed of
Muscle spindle	A small spindle-shaped sensory organ that	Muscle spindles	Lengthening of the	In: la & ll	Stretch reflex and	Several differentiated muscle fibres that
	senses the changes in length of the muscle	contract	muscle and the rate of	Out: alpha	reciprocal inhibition	are enclosed in a spindle-shaped
	and the rate of lengthening		lengthening the muscle			connective tissue sac

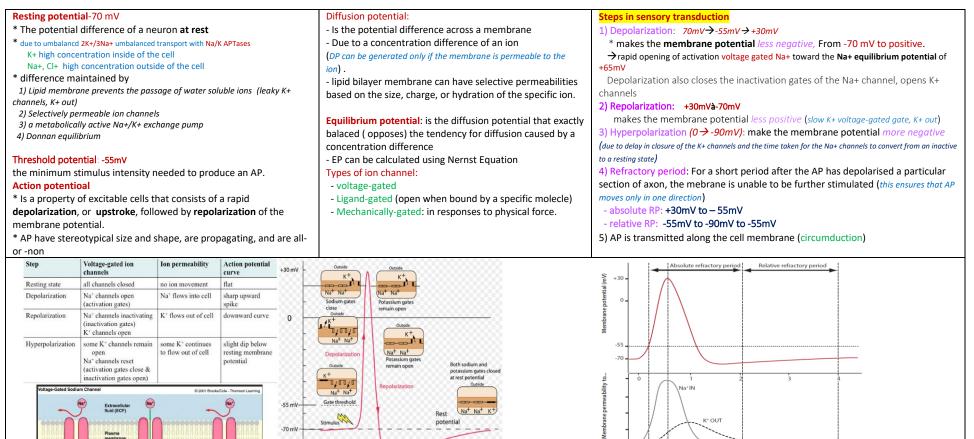

Golgi tendon	Is a sensory organ in the muscle tendon unit	Golgi tendon organs	Tension in the tendon	In: Ib	Autogenic inhibition	Braided strands of collagen which are
organ	that senses the changes in the muscle	do NOT contract		Out: alpha		encapsulated.
	tension					

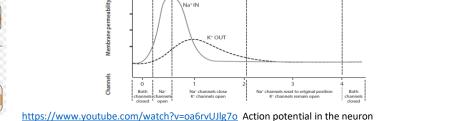
Tendon

Basic Anatomy

		Paratenon (CT surrounding each tendon, allows smooth gliding against adjacent structure.)
Level 1	Tendon 100-500μm	Epitenon: surrounding bundles of fascicle /whole tendon.
Level 2	Fascicle 20-200 µm	Endotenon: loose CT, surrounding bundles of fibril. - carrying the blood vessels, lymphatic and nerves
Level 3	Fibril 50-200nm Crimp	
Level 4	Subfibril	
Level 5	Microfibril	
Level 6	Collagen molecule	


Tendon	A dense regular connective tissues, composite material consisting of 1) <u>Collagen fibrils</u> (primarily type 1 : 95%):70-80% dry weight; parallel, viscoelastic, solid and fluid like properties - Glycin 35% - Proline 15% - Hydroxyproline 15% (is unique to collagen) 2) <u>proteoglycans & Glycoproteins</u> (1-5% dry weight): <u>Decorin is the most common proteoglycan in tendon</u> <u>Regulate collagen fibrillogenesis and control fibril diameter throughout</u> development and homeostasis. 3) <u>Cells</u> : <u>Tenocyte and tenoblasts(90-95%)(main regulator of tendon homeostasis)</u> mast cells, epithelial cells, chondrocytes, 4) water 55-70% by weight	 * Tendons have a high tensile strength. * Each muscle has <i>two tendons</i> to attach each end to bone * Cells are <i>spindle shaped</i> and arranged in parallel rows, * In cross section they are dark star shaped structures. * They have a central round nucleus * Cytoplastic processes extend between collagen bundles Homeostasis Tenocyte, tenoblast: main regulator of tendon homeostasis Elastic fibres make up 1-10% of tendon dry weight and they are highly elastic, fatigue resistant and able to store energy. 	Function of a tendon 1) contact bone to muscle 2) support joint 3) store kinetic energy (fibroelastic property) High tensile strength due to hierarchial structure and local cell population adapting to changes in loading condition. 4) Mechanosensitive: respond to mechanical loading, modulate ECM by forming and degrading matrix proteins (Mechanotransduction) Normal physiological loads necessary for tendon development and maintenance Abnormal loading inhibits capacity of cell population to maintain homeostasis ⇒ injury Reestablishment of mechanotransduction may be key to improving repair following injury
Tendon sheaths and paratenon	 Where tendons wrap round bony surfaces large compressive forces are produced They tend to assume a local cartilage-like appearance Sliding is assisted by synovial fluid secreted from the parietal and visceral (epitenon) synovial membrane 	Tendon sheath 1) Tendons that bend with joint motion are surrounded by a synovial sheath (e.g. wrist, ankle); 2) Tendons that do not bend are enclosed in a loose paratenon. - many vessels enter at multiple sites - There are watershed area where relative avascularity may be a factor in tendinopathy.	
Blood supply	 Blood supply from vessels in the <u>perimysium</u>, <u>periosteal attachment</u>, and <u>surrounding tissues</u> via vessels in the <u>paratenon</u> or <u>mesotenon</u> Tendons covered by a tendon sheath are relatively avascular The mesotenons are reduced to <u>vinicula</u> which are relatively avascular Tendons reduced vascularity around bony pulleys. Some of the nutrition may therefore come via <u>diffusion</u> from the synovia fluid 	Vascularity Two sources 1) Intrinsic: MTJ and OTJ. 2) Extrinsic: through paratenon or the synovial sheath.	Nutrition from - vessels in perimysium - Vessels in periosteal attachment - vessels in paratenon or mesotenon - Diffusion from synovial fluids.


Stress-strain relationship	 1) Initial creep as crimp is taken up 2) Followed by a linear elongation (the slope is the elastic modules due to the tendon's viscoelastic properties before the tendon fails). * Flexor tendons have greater tensile strength than extensor tendons (2x) No difference at birth * Exercise increases the tensile strength of tendons, * immobilisation reduces the tensile strength. * Tensile overload → degenerative tendinopathy → rupture 	(N) peop	Region Failure Region	 Tendon injury: Direct trauma (laceration, content of the second of the se	
Hysteresis (滞后作用)	With repeated loading and unloading, the stress-strain curve shifts to the right - Because of viscoelasticity (tendons exhibits stress relaxation, creep, and hysteresis) - At high strain rates, the onset of permanent stretch is delayed.	Stress	Loading Cycle	Effect on Muscle efficiency 1. Because tendons elongate un loading this enhances muscle pl 2. In an isometric contraction, t 3. Because the muscle tendon u muscle is allowed to shorten 4. This increases the efficiency of increasing performance and res	hysiology he tendon gradually <mark>elongates</mark> nit length remains constant , the of the muscle contraction,
Factors affecting mechanical properties	 Exercise Exercise training results in a positive increase in <i>stiffness, weight</i> and <i>tensile strength</i> Crimp angle and crimp effect are positively influenced It may also enhance <i>collagen synthesis</i> Exercised tendons have a higher percentage of <i>thick collagen fibrils</i> These contains a higher number of <i>intrafibular covalent crosslinks</i> 	 Age Before maturity the linear regio region in which irreversible elongatakes place After maturity the single yield p there are 2 distinct yield regions The ultimate stress and strain in The age-related decrease in the region of the stress-strain curve 	ation and structural damage lateau is not as obvious, and ncrease with maturation	 3. Trauma a) Direct trauma is especial upper limbs b) Healing is directly related in c) Most tendons can withstat than can be exerted by the bones. → This leads to avulsion frame 	turn related to <i>vascularity</i> and <i>tensile forces</i> greater muscles or sustained by the
Tendon healing phases (overlapping)	Initial inflammatory phase (0-7 days) - Fibrin clot to stabilise site - Haemostasis - Migration of neutrophils, macrophages, erythrocytes - Subsequent neovascularization https://www.youtube.com/watch?v=zSwwvit00mg physiology of tendon healing	Repair /proliferative phase (3-60d Extrinsic stage (up to 4wks): - Type III collagen production by - fibronectin lay down - vascular network Intrinsic stage (4wks-6wks) - intrinsic tenocytes lay down typ	extrinsic tenocytes (disorganised)	* Maturation (10wks-1 year): 1) ECM remodelled and more turnover, realignment, cross	repair changes from cellular to fibrous increasing synthesis Type I collagen. re organised through collagen
Collagen and tendon healing stages	 Synthesis begins as early as 3 days Protein mucopolysaccharide density increases Procollagen Hydroxyproline OH bonds bind with other amino acids ketoamide groups Collagen molecules begin to polymerise into <i>fibrils</i> These progressively accumulate more collagen molecules 	3days -Inflammatory cells in the wound -some fibroblasts 7 days - increase in fibroblast invasion - migrating from the paratenon	2 weeks - tendon stumps fused by a fibrous bridge - marked increase <i>Collagen production</i> <i>Fibroblasts</i> , <i>vessels</i> - fibres perpendicular to the wound	21 days - more collagen in wound -start of longitudinal fibre -collagen near the tendon more organised	28days - increase cellularity - increased vascularity -collagen fibres more longitudinally orientated.
Tendon homeostasis	 * Tendon injury often due to excessive or insufficient mechanical loading → this impairs the ability of the tendon cells the maintain normal tendon function. - Tendon cells and tendon tissue are mechanosensitive (cells alter the extracellular matrix in response to local load changes) - Natural tendon healing is insufficient 	Mechanisms of injury Internal tensile overloading events (most tendons can withstand tensile forces greater than the muscle can exert or that the bones can sustain→ avulsion fractures, MTJ tears) * acute: isolated overloading event		Mechanisms of chronic injury - e.g. patellar tendon, Achilles, CEO (ECRB) - Causes: 1) repetitive motions; overuse leading to microtears. 2) Underuse (loss of homeostatic tension) → apoptosis. - Pathology:	


	a) improper collagen fibril diameter forr b) collagen fibril distribution c) overall fibril misalignment. - Current tendon repair rehab pr early, well-controlled loading ex - Tissue engineers look		* acute indirect inj impairment	re, excessive loading events uries: often indicative of underlying chronic nportant in the hands and upper limbs	1) changes to normal <u>tenocyte morphology</u> , apoptosis 2) altered <u>collagen fibril distribution</u> profile 3) Neovascularisation, angiogenesis (hyperaemia on uss) If microtears do not repair properly \rightarrow excessive inflammation degeneration, overall weakened structure, risk of rupture.
Tendinopathy	This is a painful condition of a te Most common in the Achilles Tendonitis : acute inflammation Tendinosis : chronic with degene inflammation. Tenosynovitis : inflammation of diseases, infection or injury. Mos	and injury of a tendon rrative cellular changes. No the sheath. Caused by inflammatory	Postme HRT: improves tene	tasis opusal have decreased risk of tendinopathy. nopause: equivalent risk don structure in active but not sedentary patient , increase with ds duration. T2DM impair healing	Physiological exercise→ ↑ proliferation, collagen production, tenocytic gene expression. Overuse/fatigue→ Matrix damage, tenocyte apoptosis Smoking, obesity, high cholesterol→promote degeneration
	 Negative images is powerful increased amount of alignment 	pathy ed by dose-dependent tendon load t fibrillar structure→ treat the donut tells, biomechanical environment,	Load: isotonic (con Medications Injectables: PRP, C injections		Loading interventions 1) reduce pain, improve function 2) Improve extracellular matrix 3) Influence muscle and neural mechanisms 4) Clinical outcomes not dependent on structural changes. Isometric exercise Reduces pain Reduces motor inhibition Neuroplasticity Increases strength.
igaments					
behaviour to ter	position and mechanical	3 main functions 1) Mechanical stabilizing 2) Viscoelastic behaviour in helping homeostasis	g provide joint	Factors influence the properties of ligaments 1) biochemistry 2) skeletal maturity 3) age	Injuries are classified as - Partial (grade 1 & 2) - Complex (grade 3) Healing of licaments (like tendon)

* more complex load bearing structures	homeostasis		3) age		Healing of ligaments (like tendon)
 lower percentage of collagen 	Provide joint proprioception.		4) immobilization		- Initial inflammatory
 Higher percentage of ground substance 	l l				- proliferative phase
 More variable collagen fibre directions 	L				 remodelling and maturation
Enthesis		Direct insertion: 4		Indirect	Injury
The attachment point of the ligament to bone is	Ligament	zones		insertion:	Failure in this region commonly in the soft tissues
known as enthesis		Zone 1: end of the	Muscle	Sharpey's	of the bone adjacent to the junction (avulsion #).
Tendon \rightarrow Fibrocartilage \rightarrow mineralised FC.	Collagen 1 mm Fibrocartilage	tendon itself Zone II: thin layer of fibre cartilage Zone III: mineralized	Tendon Periosteum	fibres	
* This arrangement helps to strengthen the	Mineralised Fibrocartilage	cartilage	Periosteal Connective tissue		
tendon at the critical tendon-bone interface.	Bone	Zone IV: bone	perforating (Sharpeys) fibers		
			IBI BOOK AND AND BORE		

Components of the nerve system	1 Oligodendrocytes (CNS)	Nodes of Ranvier:	Nerve cells (Neuron)
* Central NS: brain & Spinal cord	1) one cell myelinate several different axons	- The gaps between each Schwann cells along axon	- Cell body: contains nucleus, organelles; <10%
* Peripheral NS: cranial(12P), spinal(31P),	2) average 15 cellsoligodendrocyte	 axon diameter is reduced slightly 	T/volume; metabolic centre
peripheral nerve	2 <mark>Schwann cells (PhS)</mark>	- Concentration of Na+ channels is high \rightarrow Facilitates	- Dendrites: thin processes that branch off the
* Autonomic NS: sympathetic,	* Arise from the <i>neuroectoderm</i>	Saltatory conduction (AP jumps electrically from one	cell body; receiving synaptic input from other
parasympathetic, enteric systems.	* Responsible for myelination of PNS	node to the next)	nerve cells.
Cells	- 1 cell myelinates a region of 1 axon	Myelin sheet:	- Axon terminal:
Neurons: sending and receiving signals	 - 1 axon → up to 500 Schwann cells * Line up at intervals of 0.1 to 1mm (known as the nodes of Ravnier) 	* Formed by Oligodendrocytes and Schwann cells	- Axolemma: cell membrane
(chemically-mediated electrical signals)	* Multilaminar structure (Double cell membrane wrapped round in	* Membranous process wrapped concentrically	- Axoplasm: cytoplasm
Glial cells: all nerve cells are surrounded	concentric spirals)	around the anon in a tight spiral (by 1 schwann cell)	
by glial tissue (support neurons)	* unmyelinated cells normally have at least one layer of myelin.	* 70% lipid + 30% protein	

Nat

Avperpolarization

Active sodium and potassium

Natr

-90 mV

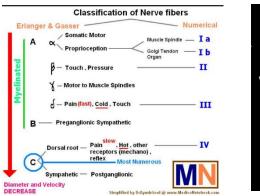
Inid ACE

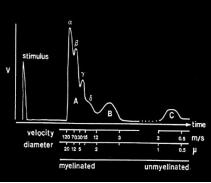
losed but capable opening

(-70 mV)

proximal stimulus

Axoplasmic transport


 * moving molecules and organelles inside the cell (long distance between cell bodies and presynaptic terminals) * proteins can only be made in cell body, (Transport system delivers molecules to the periphery, return degradation product back for reprocessing) * 3 transport system: 1) slow anterograte 2) fast anterograte 3) fast retrograde transport 	Energy requirment: depends on 1) ATP derived from oxidative metabolism 2) Ca++ concentration Sequested in mitochondria, Smooth ER Bound to calmodulin (将调节蛋白)	Microtubule Transport *Require 1) ATP, 2) ATPase, 3) calcium, 4) carrier proteins * Organelle or protein binds to carrier protein * Carrier protein binds to microtubule * Microtubule side arms use ATP (enables microtubule to move the carrier protein)	Retrograde Transport 1) Returns material to cell body (e.g. <i>empty neurotransmitter vesicles</i>) 2) Delivers extracellular factors such as NGF to the cell body 3) Deliver viruses (<i>polio, herpes zoster, rabis</i>), tetanus toxin
Glucose Na" Na Mitochondia El Ca ²⁺ == Ca BP ATP K* Microlubule	Organelle Organelle Kinesin Microtubule Side arms carrier protein move The organelle or protein using energy derived from ATP	 * Different carrier proteins are used for different transport rates. * Different speeds are due to different drop off rates 	 Dyes can be carried and allow axonal tracking (Materials are packed in large membrane bound organelles)


Molecular biology of sensory transduction

 Pain: is a sensory and emotional experience in the brain . Afferents referred to as nociceptors respond to noxious or potentially tissue-damaging stimuli that are normally perceived as painful. * Pain fibers: <u>C fibers</u> (very small, slow unmyelinated, carry prolonged nociceptive impulse); mechano-thermal, warm, aching, dull and boring sensations. A delta fibres(small, myelinated fibre, carry initial response to pain); respond to mechanical, cold, sharp pain. Sensory transduction: is conversion of the energy of a stimulus into an electrical signal. Sensory information arising from the body, referred to as somatosensation. 	channel (E channel) is above the action potential threshold (AP	Classification of receptors (type of stimulus / forms of energy converted) 1. mechanoreceptors ==== mechanical touch 2. Chemoreceptors =====chemical smell taste 3. Thermoreceptors =====warmth thermal 4. nociceptors stimuli which are injurious to body tissue example pain 5. Photoreceptors =====Electromagnetic light
---	---	--

Classification of nerves by Erlanger and Gasser

Axon type	Myelination	Diamet er (µm)	Conduction velocity(m/s)	Function
Aα (M, S)	М	20	100	Efferent to skeletal muscle Afferent from muscle spindles and tendon stretch organelles
Aβ (S)	Μ	10	50	Organised sensory receptors, e.g. Merkel, Pacinian, Ruffini, hair follicules
Αγ (Μ)	Μ	5	20	Efferent to muscle spindles
Aδ (S)	М	5	20	Fast pain (e.g. knife), crude touch, cold sensation
В	М	3	10	Pre-ganglionic autonomic
C (Pain)	UM	1	2	Post-ganglionic autonomic, slow pain (e.g.nettles), thermoreceptors, reflex responses

Aetiology of nerve injury	Mechanicism of nerve injury	Classification of injury	
Physical: traction, trauma, injection, thermal Inflammation Infection	Open/closed injuries Acute/chronic Single/continuing/repeated	Neurapraxia: transient concussion or crushing of the nerve causes interruption of physical function, and a local conduction block. No Wallerian degeneration (preserving sympathetic fibres and deep-pressure	Wallerian degeneration: Degenerative lesions
Ischaemia Pharmacological	Whole/part of a nerve Depth of the lesion	sensation); Full recovery is likely. Axonotmesis: degenerative lesion (a progressive loss of all	
Tumour Systemic disease latrogenic	Nerve state (healthy/diseased)	<i>peripheral function</i>), with favourable progressis Neuronotmesis: Degenerative lesion with unfavourable prognosis eg. Nerve completely transected; surgery	
Type of neuropathic pain following injury		·	·
 post-traumatci neuralgia: pain after nerve injury with no sympathetic involvement. Spontaneous, worsenedby physical stimulus. Within the teritory of the nerve. 	2) Neurostenalgia: pain caused by persistent nerve compression/ distortion/ ischaemia or a nerve that is anatomically intact.Pain usually confined to the territory of the nerve	Causalgia/chronic regional pain syndrome (type 2) Burning pain with allodynia, hyperpathia, disturbance of skin colour, altered temperature and sweating. This is a rare but severe injury, often seen with partial division of a nerve. Pain is intense, beyond the territory of the damaged nerve. Sympathetic involvement is characteristic.	Central pain Caused by root avulsions. - a constant crushing or buring pain felt within the anaesthetic part - a sharp shooting pain within the dermatome of the affected nerve.
Terms used to describe symptoms		r	r
Paraesthesia: Spontaneous abnormal sensation Dysaesthesia: Unpleasant spontaneous normal s Allodynia: pain from stimulation that does not n Hyperalgesia: increased response to a stimulus t Hypersensitivity: over-reaction sensitivity of reg Hyperpathia: deep-seated, poorly localized, fiery is induced by palpation of the muscles	ormally cause pain hat is normally painful eneration	 Double crush syndrome: * nerve entrapment at two locations of the same nerve, both contributing to symptoms fo the patients. * Proximal compression of a nerve fibre leads to impairments in slow and fast transport → disruption of axonal transport systems decreases the delivery of cytoskeletal components. E.g.tubulin, actin etc. * a distal impingement of a peripheral neve → develplment of an entrapment neuropathy at more proximal levels. * e.g. CTS + cervical neuropathy. 	