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Nociceptor inputs can trigger a prolonged but reversible increase in the excitability and synaptic efficacy
of neurons in central nociceptive pathways, the phenomenon of central sensitization. Central sensitiza-
tion manifests as pain hypersensitivity, particularly dynamic tactile allodynia, secondary punctate or
pressure hyperalgesia, aftersensations, and enhanced temporal summation. It can be readily and rapidly
elicited in human volunteers by diverse experimental noxious conditioning stimuli to skin, muscles or
viscera, and in addition to producing pain hypersensitivity, results in secondary changes in brain activity
that can be detected by electrophysiological or imaging techniques. Studies in clinical cohorts reveal
changes in pain sensitivity that have been interpreted as revealing an important contribution of central
sensitization to the pain phenotype in patients with fibromyalgia, osteoarthritis, musculoskeletal disor-
ders with generalized pain hypersensitivity, headache, temporomandibular joint disorders, dental pain,
neuropathic pain, visceral pain hypersensitivity disorders and post-surgical pain. The comorbidity of
those pain hypersensitivity syndromes that present in the absence of inflammation or a neural lesion,
their similar pattern of clinical presentation and response to centrally acting analgesics, may reflect a
commonality of central sensitization to their pathophysiology. An important question that still needs
to be determined is whether there are individuals with a higher inherited propensity for developing cen-
tral sensitization than others, and if so, whether this conveys an increased risk in both developing con-
ditions with pain hypersensitivity, and their chronification. Diagnostic criteria to establish the
presence of central sensitization in patients will greatly assist the phenotyping of patients for choosing
treatments that produce analgesia by normalizing hyperexcitable central neural activity. We have cer-
tainly come a long way since the first discovery of activity-dependent synaptic plasticity in the spinal
cord and the revelation that it occurs and produces pain hypersensitivity in patients. Nevertheless, dis-
covering the genetic and environmental contributors to and objective biomarkers of central sensitization
will be highly beneficial, as will additional treatment options to prevent or reduce this prevalent and pro-
miscuous form of pain plasticity.

� 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
1. Introduction

In 1983 I published a study indicating that many features of the
pain hypersensitivity accompanying peripheral tissue injury or
inflammation were the direct result of an augmentation of sensory
signaling in the central nervous system [255]. A central amplifica-
tion during angina pectoris had been postulated exactly 100 years
before by W. Allen Sturge MD, who in an 1883 paper in Brain envis-
aged a possible central nervous system ‘‘commotion .. . .. . . passed
up from below” that somehow contributed to the clinical features
of ischemic cardiac pain. However, the importance of this clinical
insight lay largely dormant for a century, except for one human
volunteer study on secondary hyperalgesia that was recognized
by the authors as suggestive of a possible central contribution to
the spread of pain sensitivity [101]. What I found in a pre-clinical
for the Study of Pain. Published by

du
study on stimulus–response relations in the spinal cord was that
the afferent activity induced by peripheral injury triggered a
long-lasting increase in the excitability of spinal cord neurons, pro-
foundly changing the gain of the somatosensory system [255]. This
central facilitation manifested as a reduction in threshold (allo-
dynia), an increase in responsiveness and prolonged aftereffects
to noxious stimuli (hyperalgesia), and a receptive field expansion
that enabled input from non-injured tissue to produce pain (sec-
ondary hyperalgesia) [51,255–256,268,273].

I have recently reviewed the circumstances surrounding the
discovery of the activity-dependent synaptic plasticity in the spinal
cord that generates post-injury pain hypersensitivity [259], and
that became termed ‘‘central sensitization” [272], as well as the
current state of understanding of the cellular and molecular mech-
anisms responsible for this form of neuronal plasticity [147]. What
I would like to specifically address in this review are the clinical
implications of the phenomenon. What has central sensitization
taught us about the nature and mechanisms of pain in patients,
Elsevier B.V. All rights reserved.
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and what are the implications of central sensitization for pain diag-
nosis and therapy? Before doing this though, it is important first to
understand exactly what central sensitization represents, how it
has changed our general understanding of pain mechanisms, as
well as reviewing the substantial data on central sensitization de-
rived from studies on experimental pain in human volunteers.

2. What is central sensitization?

Prior to the discovery of central sensitization, the prevailing
view on pain processing in the central nervous system was of a lar-
gely passive neural relay that conveyed by encoded action poten-
tials, information on the onset, duration, intensity, location and
quality of peripheral noxious stimuli, much like a telephone wire,
from one site to another. More specifically, the CNS pathway was
seen to constitute particular anatomical connections in the spinal
cord, brain stem, thalamus and cortex (the ‘‘pain pathway”), link-
ing the sensory inflow generated in high threshold primary affer-
ents with those parts of the cortex that leads to the conscious
awareness of painful sensations. The spinal gate control theory
by Melzack and Wall in 1965 had highlighted that this sensory re-
lay system could be modulated in the spinal cord by inhibitory
controls [163], and considerable progress had been made by the
early 1980’s in identifying such inhibitory circuits [18]. Indeed this,
together with the discovery of enkephalins and endorphins
[98,109], diffuse noxious inhibitory controls [150], transcutaneous
nerve stimulation [224], and the rediscovery of acupuncture [25],
generated a much greater emphasis at that time on endogenous
inhibitory controls than on those factors that might increase exci-
tation, and thereby produce pain hypersensitivity. However, there
was one exception, which was related to the discovery of periphe-
ral sensitization in the 1970’s [178]. Work by Iggo [28,112] and
Perl [20,33,177] had identified specific high threshold sensory neu-
rons tuned to respond only to noxious stimuli, hence their name
nociceptors [265], a term first coined by Sherrington based on his
studies on noxious stimulus evoked flexion reflexes. Furthermore,
first Perl and then others showed that nociceptor peripheral termi-
nals could become ‘‘sensitized” after injury, reducing their thresh-
old, mainly to heat stimuli, and only within the site of injury where
the terminal was exposed to inflammatory modulators, the zone of
primary hyperalgesia [23,41,138,146,178]. While this phenome-
non is clearly a very important contributor to inflammatory pain
hypersensitivity [22], it cannot account for dynamic tactile
allodynia, the temporal summation of pain, or secondary hyperal-
gesia. Some other explanation was needed as the neurobiological
basis for these symptoms, which turned out to be increased synap-
tic function triggered within the CNS by nociceptive inputs
[257,237,268].

The realization that synapses were subject to a form of use-
dependent plasticity that could increase their strength or efficacy
had steadily gained ground by the early 1980’s. The phenomenon
had first been described in the CNS as short lasting a post-tetanic
potentiation of mono synaptic IA synaptic input to motor neurons
by Lloyd in 1949 [155], one that could spread to other synapses on
motor neurons [21]. This was followed by the discovery of windup
in dorsal horn neurons by Mendell and Wall in 1965 [164], where
repeated low frequency stimulation of a nerve at constant C-fiber
strength was found to elicit a progressive increase in action poten-
tial firing over the course of the stimulus. A transformative break-
through was the first description of long term potentiation (LTP) in
the hippocampus by Bliss and Lomo in 1973, where a brief high fre-
quency coincident input produced a persistent increase in synaptic
efficacy, opening the door for an extensive and still ongoing study
into the molecular mechanisms of synaptic plasticity. LTP was first
recorded in the spinal cord in 1993 [182], where it represents a
particular component of the general phenomenon of central sensi-
tization [113,114,122]. In 1976 Kandel and colleagues described a
sensitization of the gill withdrawal reflex in the sea snail Aplysia,
which was associated with a facilitation of the synapse between
sensory and motor neurons [29]. However, these data were inter-
preted as reflecting memory and learning rather than an inverte-
brate model of pain hypersensitivity, although of course the two
phenomena converge in this, and in other model systems, although
there are differences too [122,274].

What I found in my original study by 1983 and subsequent pre-
clinical studies with colleagues at University College London was
that a brief (�10–20 s), low frequency (1–10 Hz) burst of action
potentials into the CNS generated by electrical stimulation or
natural activation of nociceptors increased synaptic efficacy in
nociceptive neurons in the dorsal horn of the spinal cord and this
lasted for tens of minutes after the end of the conditioning
stimulus [50,51,230,244,245,255,256,263,264,267,272,273]. This
phenomenon differed from windup, which represented a progres-
sively increasing output during the course of a train of identical
stimuli (technically called homosynaptic potentiation); central
sensitization was concerned instead with the facilitation that man-
ifested after the end of the conditioning stimuli, and that once trig-
gered remained autonomous for some time, or only required a very
low level of nociceptor input to sustain it. Furthermore, central
sensitization represented a condition where input in one set of
nociceptor sensory fibers (the conditioning input) amplified subse-
quent responses to other non-stimulated non-nociceptor or noci-
ceptor fibers (the test input; this form of facilitation is termed
heterosynaptic potentiation to distinguish it from homosynaptic
potentiation where the test and conditioning input are the same)
[231]. The classic form of LTP in the hippocampus is homosynaptic
with changes in efficacy restricted to activated synapses, a conver-
gent plasticity, and while this is a feature of some aspects of central
sensitization [190], most of its clinically relevant attributes relate
to its divergent heterosynaptic components [147]. The underlying
neurobiological basis for central sensitization is that for most cen-
tral circuits, the receptive field properties of neurons defined by
the firing of action potentials is only the ‘‘tip of the iceberg”. Most
of the synaptic input to neurons is subthreshold [262,263], acting
subliminally either because synaptic input is too weak or mem-
brane excitability is restrained by inhibitory inputs. Increasing syn-
aptic strength by a presynaptic increase in an excitatory
transmitter release or in the post synaptic response to the trans-
mitter [46,100,129,130,133,151,152,154,227,231,247,264,271] or
by reducing inhibition [12,103,168,180,165,208,226] or increasing
membrane excitability can recruit these normal subthreshold in-
puts to suprathreshold action potentials, producing profound
changes in functional properties [270]. More recently it has be-
come appreciated that in addition to activity-dependent synaptic
plasticity, changes in microglia, astrocytes, gap junctions, mem-
brane excitability and gene transcription all can contribute to the
maintenance of central sensitization [43,44,47,48,88,104,186,189,
205,234]. Figs. 1 and 2 summarize sensory processing under nor-
mal circumstances and the changes that result from induction of
central sensitization.

An important implication of these early basic science studies
was the possibility that the pain we experience might not neces-
sarily reflect the presence of a peripheral noxious stimulus. We
learn from our everyday experience interfacing with the external
environment to interpret pain as reflecting the presence of a
peripheral damaging stimulus, and indeed this is critical to its pro-
tective function. Central sensitization introduces another dimen-
sion, one where the CNS can change, distort or amplify pain,
increasing its degree, duration, and spatial extent in a manner that
no longer directly reflects the specific qualities of peripheral nox-
ious stimuli, but rather the particular functional states of circuits
in the CNS. With the discovery of central sensitization, pain



Fig. 1. Normal sensation. The somatosensory system is organized such that the highly specialized primary sensory neurons that encode low intensity stimuli only activate
those central pathways that lead to innocuous sensations, while high intensity stimuli that activate nociceptors only activate the central pathways that lead to pain and the
two parallel pathways do not functionally intersect. This is mediated by the strong synaptic inputs between the particular sensory inputs and pathways and inhibitory
neurons that focus activity to these dedicated circuits.

Fig. 2. Central sensitization. With the induction of central sensitization in somatosensory pathways with increases in synaptic efficacy and reductions in inhibition, a central
amplification occurs enhancing the pain response to noxious stimuli in amplitude, duration and spatial extent, while the strengthening of normally ineffective synapses
recruits subliminal inputs such that inputs in low threshold sensory inputs can now activate the pain circuit. The two parallel sensory pathways converge.
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conceptually at least had become ‘‘centralized” instead of being
exclusively peripherally driven. In this sense central sensitization
represents an uncoupling of the clear stimulus response relation-
ship that defines nociceptive pain. Nociceptive pain reflects the
perception of noxious stimuli. In the absence of such potentially
damaging stimuli there is no nociceptive pain. However, after the
discovery of central sensitization it became clear that a noxious
stimulus while sufficient was not necessary to produce pain. If
the gain of neurons in the ‘‘pain pathway” in the CNS was in-
creased, they could now begin to be activated by low threshold,
innocuous inputs. In consequence pain could in these circum-
stances become the equivalent of an illusory perception, a sensa-
tion that has the exact quality of that evoked by a real noxious
stimulus but which occurs in the absence of such an injurious
stimulus. This does not mean that the pain is not real, just that it
is not activated by noxious stimuli. Such pain can no longer be
termed nociceptive, but rather reflects a state of induced pain
hypersensitivity, with almost precisely the same ‘‘symptom”
profile to that found in many clinical conditions. This raised the
immediate obvious question, was central sensitization a contribu-
tor to clinical pain hypersensitivity?

These notions were generally not very well received initially,
particularly by physicians who believed that pain in the absence
of pathology was simply due to individuals seeking work or insur-
ance-related compensation, opioid drug seekers, and patients with
psychiatric disturbances; i.e. malingerers, liars and hysterics. That
a central amplification of pain might be a ‘‘real” neurobiological
phenomenon, one that contributes to diverse clinical pain condi-
tions, seemed to them to be unlikely, and most clinicians preferred
to use loose diagnostic labels like psychosomatic or somatoform
disorder to define pain conditions they did not understand. We
can now 30 years later, based on data from many studies in human
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volunteers and patients, address whether central sensitization, de-
fined operationally as an amplification of neural signaling within the
CNS that elicits pain hypersensitivity, is a real phenomenon or not,
and can assess its relative contribution to inflammatory, neuro-
pathic and dysfunctional pain disorders in patients [53,258].

3. Central sensitization in human volunteers

The first clear demonstration of central sensitization in human
volunteers came from a psychophysical study by LaMotte and col-
leagues on the secondary cutaneous hyperalgesia that is elicited by
intradermal capsaicin injection (which activates the TRPV1 recep-
tor). They found intense localized pain lasting minutes at the injec-
tion site, followed immediately by three zones of hyperalgesia; a
small zone of heat hyperalgesia close to the injection site lasting
1–2 h, an intermediate zone of dynamic tactile allodynia spreading
beyond the area of heat hyperalgesia and lasting several hours, and
the largest zone to pinprick, way outside of the injection site,
which remained present for up to 24 h [145]. The investigators
then showed that the secondary mechanical hyperalgesia required
sensory inflow to the CNS because local anesthesia prior to the cap-
saicin injection blocked it. In addition because the pain sensitivity
crossed a tight band that prevented circulation in the skin, they
concluded that it was not due to a local spread of the capsaicin
or any peripheral inflammatory mediator. An even more direct
demonstration that activity-dependent central sensitization was
responsible for tactile allodynia and secondary hyperalgesia in hu-
mans came from a second study by La Motte, this time with Tore-
bjork in 1992 [233]. They again used intradermal injection of
capsaicin to induce an area of tactile allodynia that lasted for 2 h.
Nerve block experiments revealed that while the capsaicin and
heat pain was carried by C fibers, the mechanical allodynia was
transferred to the CNS by low threshold myelinated fibers. The
most elegant part of the study was their finding that electrical
intraneural stimulation of single Ab mechanoreceptive fibers that
elicited a non-painful tactile sensation before the capsaicin injec-
tion, began to produce pain if the fibers’ receptive field fell within
the zone of secondary mechanical hyperalgesia. Lidocaine anesthe-
sia of the cutaneous innervation territory of the stimulated fiber
did not reverse the pain, showing that this was not peripheral in
origin. They concluded that the pain evoked by stroking the skin
area surrounding a painful intradermal injection of capsaicin ‘‘is
due to reversible changes in the central processing of mechanore-
ceptive input from myelinated fibres which normally evoke non-
painful tactile sensations”.

Another early study, this time by Koltzenburg and Torebjork,
using mustard oil (which activates TRPA1) as the pain conditioning
stimulus, together again with differential nerve blocks, confirmed
that brush-evoked mechanical allodynia was mediated by low
threshold Ab fibers that normally encode non-painful tactile sensa-
tions [140]. Unlike after capsaicin, however, the mustard oil evoked
tactile allodynia required an ongoing low level input from C-noci-
ceptors to sustain it, indicating that different sensory fibers may
have different central actions, some short and others long lasting,
and indeed further studies have shown differences in the duration
of tactile allodynia after capsaicin and mustard oil [139], the signif-
icance of which was not appreciated a the time because it was not
clear then that these irritants acted on quite different TRP receptors.

That central sensitization could cause a spread of pain sensitiv-
ity across peripheral nerve territories, the neurological dogma for
diagnosing a disease of the central rather than peripheral nervous
system was shown by Max and colleagues using the intradermal
capsaicin model in volunteers together with radial or ulnar nerve
blocks to clearly identify individual nerve territory [192]. Comple-
menting this, a study comparing skin hyperaemia induced by a
skin burn injury found that the skin blood flow changes induced
by the injury had disappeared by the time secondary mechanical
hyperalgesia peaked, and the two were not correlated in time or
space, supporting the conclusion that peripheral mechanisms do
not contribute to secondary hyperalgesia [198]. Perhaps even more
dramatic, was the relatively recent demonstration that intradermal
capsaicin induces contralateral hyperalgesia and allodynia that are
delayed in their manifestation and reduced in extent compared to
the ipsilateral secondary hyperalgesia, but present in a majority of
subjects [206], a form perhaps of ‘‘tertiary hyperalgesia” that can-
not be peripheral in origin. What pain sensitivity we feel then, can
be determined by the state of excitability of neurons in the CNS.

Central amplification of Ad nociceptor fiber test input following
a C-fiber conditioning input was shown to contribute to pinprick/
punctate secondary hyperalgesia, again using the intradermal cap-
saicin model [279], underscoring the different identity of the affer-
ent signals that elicit central sensitization as a conditioning
stimulus (C-fibers) from those that elicit allodynia (Fb) or hyperal-
gesia (Ad), a further clear manifestation of heterosynaptic facilita-
tion. In a similar vein, another study found that pin prick
hyperalgesia induced in response to intradermal capsaicin was
actually mediated by capsaicin-insensitive afferents, showing that
the test and conditioning inputs in this setting are quite different
[87], while the secondary hyperalgesia elicited by intradermal cap-
saicin was shown by yet other investigators, to be restricted to
mechanical stimuli, with no correlation between the magnitude
of capsaicin evoked pain and the extent of punctate or tactile sec-
ondary hyperalgesia [237]. Furthermore, temporal summation to
pin prick in the zone of capsaicin injection (as model of homosy-
naptic facilitation/windup) was mechanistically independent of
the development of secondary hyperalgesia, because while the
gain of the stimulus–response relationship in the zone of second-
ary was increased that of the windup was not changed, even
though the actual pain was enhanced [158]. A similar conclusion
was made after a study where repeated intradermal capsaicin
injections were reported to produce a progressively diminishing
pain, presumably due to desensitization, while the allodynia and
punctate hyperalgesia continued to increase [254]. Two more recent
studies using high frequency stimulation as the conditioning input
to mimic conditions that elicit LTP found that while changes in the
conditioned site (homotopic site) do occur, they are accompanied
by a development of pain hypersensitivity in the adjacent non-stim-
ulated heterotopic site (reduction in threshold, pain evoked by light
tactile stimuli, and exaggerated response to suprathreshold pinprick
stimuli [136,240], and both sets of investigators concluded that
heterosynaptic facilitation predominates in this model of central
sensitization, exactly as it does for the low frequency conditioning
inputs that mimic the natural firing range of nociceptors. Generaliz-
ing, it seems clear that heterosynaptic changes are a major feature of
the presentation of central sensitization.

Apart from changes in subjective pain measures, the conse-
quences of central sensitization can also be detected using objective
biomarkers. These include long-term changes in nociceptive with-
drawal reflexes [24] and increases in cortical event related potential
amplitudes [240]. Magnetic source imaging reveals an increase in
the excitability of neurons in the somatosensory cortex evoked by
low threshold Ab stimulation within the capsaicin-induced zone
of secondary hyperalgesia [17], while magnetoencephalography de-
tects changes in the patterns of cerebral processing [159] and func-
tional MRI, and changes in BOLD signals in the cortex, both during
secondary hyperalgesia [16]. Another MRI study found changes in
the brainstem that are apparently specific to central sensitization,
in addition to the changes in the primary somatosensory cortex that
are related to the intensity of pain [153].

While most studies have looked at the effects of skin condition-
ing stimuli on skin pain sensitivity, experimental muscle pain pro-
duced by hypertonic saline injections produces long lasting
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changes in thermal sensitivity in the area of referred pain [203],
while sustained nociceptive stimulation of myofascial trigger
points induces a wide spread central sensitization [273,275]. Inter-
estingly, in pre-clinical models, muscle and joint conditioning
afferents have a longer lasting action in producing central sensiti-
zation than those from skin [244]. A reverse approach has shown
that cutaneous capsaicin increases myofascial trigger point pres-
sure sensitivity in segmentally related muscles [211]. Conditioning
nociceptive stimuli originating in viscera, such as exposure of the
lower esophagus to acid, also induces central sensitization, leading
to viscerovisceral (pain hypersensitivity in the upper esophagus)
and viscerosomatic hypersensitivity (allodynia on the chest wall)
[193] that can be captured by esophageal evoked potentials
[194], and is associated with increased temporal summation
[196]. A recent study has replicated this esophageal model of cen-
tral sensitization using acid and capsaicin infusions, showing also
thermal and mechanical pain hypersensitivity in the rectum after
the esophageal stimulation [27], indicating how widespread the ef-
fects of central sensitization are in the gastro-intestinal tract. These
changes may be mechanistically related to widespread clinical pain
syndromes [95].

One emerging area of considerable interest is the utility of
experimental central sensitization in human volunteers to test effi-
cacy in centrally acting drugs. Drugs with efficacy in pre-clinical
models, such as NMDA receptor antagonists [271] can be tested
in Phase 1b human proof of principle studies [212]. Ketamine
inhibits central temporal summation [8] and secondary mechani-
cal hyperalgesia [142] evoked by repetitive nociceptive electrical
stimulation in humans as well as primary and secondary hyperal-
gesia after an experimental burn injury [116], visceral conditioning
inputs [251,253] and topical [6] or intradermal [204] capsaicin, but
not A delta mediated nociceptive pain [181]. Ketamine’s action on
experimental pain can be detected by fMRI [210]. Similar activity is
found for i.v. dextromethophan [115]. Collectively these data
strongly support a role for the NMDA receptor in acute activity-
dependent central sensitization [147]. However, the trials also
indicate the lack of therapeutic index between reducing central
sensitization and inducing psychotomimetic side effects. Another
class of drugs that has been extensively studied in human experi-
mental models of central sensitization is the gabapentanoids. Oral
gabapentin at doses similar to that used for chronic neuropathic
pain when given to human volunteers reduced tactile allodynia
and decreased mechanical secondary hyperalgesia elicited by
intradermal capsaicin [92]. Even single administration of gabapen-
tin had an antihyperalgesic effect on capsaicin-induced secondary
hyperalgesia and reduced fMRI signatures of central sensitization
[110]. In another study gabapentin, interestingly reduced cutane-
ous evoked central sensitization but not muscle pain [201]. Two
studies have looked at pregabalin’s efficacy in experimental human
central sensitization, one evoked by electrical stimuli [49] and the
other by intradermal capsaicin [246]. Both of these double blind
studies demonstrated efficacy for pregabalin in terms of experi-
mental tactile allodynia and secondary hyperalgesia. These data
suggest that a major component of gabapentin or pregabalin’s
mechanism of action is a reduction of central sensitization [238].
Many other centrally acting drugs with analgesic efficacy in pa-
tients reduce central sensitization preclinically, including duloxe-
tine, milnacipran and lamotrigene [15,118,170] but have not
been tested for this action in humans. Drugs that have failed to
show efficacy in human studies of activity-dependent central sen-
sitization are NK1 receptor antagonists [252] [49] and COX-2
inhibitors [35,49,250]. A COX-2 inhibitor does have efficacy though
if the central sensitization is triggered by peripheral inflammation
[225], as predicted by pre-clinical models [189].

Interestingly, while gender has been described as important for
differences in nociceptive pain sensitivity, a study on the second-
ary hyperalgesia induced by heat and capsaicin did not reveal a
gender difference [119]. Nevertheless, recent data show that pain
sensitivity including secondary hyperalgesia and brush evoked
allodynia is heritable, with an estimated 50% genetic contribution
to the pain variance [172]. The genetic polymorphisms involved
in the differential susceptibility to secondary hyperalgesia have
not been comprehensively investigated, although some candidates
are beginning to be identified in studies of experimental central
sensitization [228]. This is an area that requires major research.

The following conclusions can be made from this survey of the
published studies of experimental pain hypersensitivity in human
volunteers. Central sensitization is a robust phenomenon, readily
induced in human volunteers in response to diverse ways of acti-
vating nociceptors (electrical stimulation, capsaicin, mustard oil,
acid, heat burn, UV burn, hypertonic saline). Generally this activ-
ity-dependent plasticity manifests immediately, but its effects per-
sist for many hours beyond the inducing conditioning stimulus,
eventually returning, however, back to baseline, indicating its
usual full reversibility. The phenomenon can be elicited by condi-
tioning skin, muscle or visceral organs, and typically presents as
dynamic tactile allodynia and punctate hyperalgesia but also en-
hanced pressure, and in some cases, thermal sensitivity, spreading
from the conditioning site to neighboring non-stimulated sites, and
even to very remote regions. Although there is a homosynaptic
(homotopic) aspect to the phenomenon, its major manifestation
is heterosynaptic (heterotopic), and for this reason and its revers-
ibility, it is perhaps inaccurate to equate central sensitization with
the LTP like phenomena in the cortex that are specifically associ-
ated with long term memory. Because central sensitization can
be induced in almost all subjects and detected using subjective
and objective outcome measures and is sensitive to pharmacolog-
ical interventions, it is a useful tool for determining the activity of
drugs on centrally driven pain hypersensitivity.

Globally, the data obtained in human volunteer studies demon-
strate that induction of use-dependent central facilitation in noci-
ceptive central pathways increases pain sensitivity and may,
therefore, contribute to clinical pain syndromes. Experimental
studies in human volunteers are necessarily restricted to use
non-injurious conditioning inputs, and therefore are limited to
studying only the activity-dependent components of pain hyper-
sensitivity elicited by sensory inputs, and not those transcrip-
tion-dependent and structural changes that manifest after
inflammation or nerve injury, which may have different mecha-
nisms, time courses and presentations [53,97,121,123,160,171,
189,229,242,261,269]. The limited experience with more severe
human experimental injury indicates that central sensitization also
contributes to the late hyperalgesia present in this model [58,176].

4. Central sensitization and the clinical pain phenotype

What features of the clinical phenotype may be contributed to,
or generated exclusively by central sensitization? While the hu-
man experimental studies reviewed above indicate that if a patient
has dynamic tactile allodynia, secondary punctuate/pressure
hyperalgesia, temporal summation and sensory aftereffects, cen-
tral sensitization may well be involved. Any sensory experience
greater in amplitude, duration and spatial extent than that would
be expected from a defined peripheral input under normal circum-
stances qualifies as potentially reflecting a central amplification
due to increased excitation or reduced inhibition. These changes
could include a reduction in threshold, exaggerated response to a
noxious stimulus, pain after the end of a stimulus, and a spread
of sensitivity to normal tissue. However, because we cannot di-
rectly measure sensory inflow, and because peripheral changes
can contribute to sensory amplification, as with peripheral sensiti-
zation, pain hypersensitivity by itself is not enough to make an
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irrefutable diagnosis of central sensitization. A further complica-
tion is that because peripheral input commonly is the trigger of
central sensitization, a reduction in pain sensitivity produced by
targeting a peripheral trigger with a local anesthetic does not ex-
clude central amplification, but may rather indicate a role of
peripheral input in maintaining it [140]. Nevertheless, there are
some features of patient’s symptoms which are more likely to indi-
cate central rather than peripheral contribution to pain hypersen-
sitivity. These include pain mediated by low threshold Ab fibers
(determined by nerve block or electrical stimulation), a spread of
pain sensitivity to areas with no demonstrable pathology, aftersen-
sations, enhances temporal summation, and the maintenance of
pain by low frequency stimuli that normally do not evoke any
ongoing pain. To assess how central sensitization may present in
patients, we need a detailed phenotyping of different patient co-
horts to capture exactly what changes in sensitivity occur, where
and when [9,11,55,86,93,188,197]. Ideally this should be combined
with objective measures of central activity, such as fMRI, so that
clear diagnostic criteria for determining the presence of central
sensitization in patients can be established. The utility of diagnos-
tic criteria for the presence of central sensitization would not only
be insight into the pathophysiological mechanisms responsible for
producing pain but more so in defining potential treatment
strategies. If a particular patient’s pain is primarily the result of
abnormal activity in nociceptors, as in patients with primary
erythromelalgia [74], the optimal therapy required is likely to be
different from a patient whose tactile allodynia and secondary
hyperalgesia are entirely maintained by central sensitization due
to changes in synaptic efficacy in the spinal cord. This is the ratio-
nale for a mechanism-based approach to the diagnosis and treat-
ment of pain [258,266]. Indeed response to a trial treatment,
such as to the NMDA receptor antagonist ketamine, can itself be
a potential diagnostic for the presence central sensitization.

5. To which clinical syndromes does central sensitization
contribute?

Given the caveats about the lack of absolute diagnostic criteria
for identifying the presence of central sensitization in patients, a
fairly large number of studies have nevertheless putatively identi-
fied this phenomenon as contributing to patients’ pain phenotype. I
will briefly review these, based on disease.

5.1. Rheumatoid arthritis (RA)

Patients with RA, the prototypic inflammatory joint disease,
have extra-articular tenderness which is correlated with the extent
of joint disease [141] but whether this is the result of peripheral or
central sensitization has not been studied. A study on juvenile
chronic arthritis reported enhanced sensitivity to noxious stimuli
both at joints and in remote areas in patients with and without ac-
tive disease, suggesting the possibility that the disease when active
sets up a state of autonomous central sensitization [107].

5.2. Osteoarthritis (OA)

This degenerative joint disease with characteristic destruction
of cartilage and alteration in bone is a very common cause of
chronic pain, particularly in the elderly. The degree of pain does
not always correlate with the extent of joint damage or presence
of active inflammation raising the possibility that there may be a
central component to the pain [26]. Supporting this is the en-
hanced degree and duration of pain and secondary hyperalgesia
evoked by intramuscular injection of hypertonic saline in patients
with OA compared to controls [13]. Patients with high pre-opera-
tive pain and a low pain threshold have a higher risk of persistent
pain after total knee replacement for OA, which was interpreted as
reflecting central sensitization [157]. Another study on 62 patients
showed that pain of central neural origin (widespread reduced
pressure pain thresholds) negatively impacted on knee functional
capacity [117]. OA patients have a lower pain threshold and have
punctate hyperalgesia in areas of referred pain, which is associated
with greater activation in the brainstem as detected by fMRI, rep-
resenting a possible biomarker for central changes [99]. The cen-
trally acting amine uptake inhibitor duloxetine which reduces
central sensitization in pre-clinical models [15,124] significantly
reduced pain more than placebo in an RCT in 231 patients with
knee OA pain [45], indicating that drugs that target central sensiti-
zation are efficacious in this patient population. In a recent pheno-
typing study in 48 patients with painful knee OA and 24 age
matched controls, the patients had reduced pressure pain thresh-
olds both at the joint and in remote areas, and increased temporal
summation. While the degree of sensitization correlated with the
pain, it did not correlate with radiological findings, leading to the
conclusion that central sensitization is an important contributor
to knee OA pain [7]. Collectively, these data intriguingly suggest
that the pain of OA, a peripheral pathology, has an important cen-
tral component, and this is clearly deserving more study to under-
stand its extent, mechanism and therapeutic implications.

5.3. Temporomandibular disorders (TMD)

Unlike OA, the pathophysiology of this syndrome is much less
well understood. However, TMD has been found to be associated
with an increase in generalized pain sensitivity after isometric con-
traction of the orofacial muscles [166], and widespread bilateral
mechanical [78] and thermal [175] pain sensitivity are reported
in women with myofascial TMD compared to age matched con-
trols, which was interpreted as suggesting widespread central sen-
sitization. In addition, a greater referred pain is elicited from the
more frequent trigger points that are found in these patients, than
in controls [77].

As for other types of facial pain, mechanical allodynia is a major
feature of periradicular inflammation (periradicular periodontitis)
with reduced threshold also in contralateral non inflamed teeth,
reflecting central sensitization [132]. After a third molar extraction
evidence for central sensitization could be detected for at least a
week (enhanced response to repetitive intraoral pinprick and elec-
trical stimulation, aftersensations and extraoral hyperalgesia)
[126].

5.4. Fibromyalgia (FM)

One of the first suggestions that fibromyalgia patients may have
generalized central sensitization came from a psychophysical
study that identified widespread reduction in thermal and
mechanical pain thresholds, as well as greater cerebral laser
evoked potentials [90], a finding replicated soon after [156]. An-
other early small study using ketamine, showed an NMDA-depen-
dent component to fibromyalgia and suggested that tender points
may represent secondary hyperalgesia due to central sensitization
[209]. Supporting this, Arendt-Nielson and colleagues found in
small study that fibromyalgia patients had lower pressure thresh-
olds and increased temporal summation to muscle stimulation,
and that intramuscular hypertonic saline injections provoked a
longer lasting and more widespread pain. In a related study, they
found that the referred pain, temporal summation, muscular
hyperalgesia and muscle pain in fibromyalgia patients were all
attenuated by ketamine [96]. In 2001, Staud and Price begun a ser-
ies of studies on fibromyalgia, first showing temporal summation
and after sensations of the pain elicited by repetitive cutaneous
thermal stimuli and repetitive mechanical stimuli to muscles
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[221]. In a second study they found that temporal summation oc-
curred at substantially lower forces and at a lower frequency of
stimulation in fibromyalgia patients than in control subjects, and
that painful after sensations were greater in amplitude and more
prolonged [215]. The enhanced experimental pain in fibromyalgia
patients was shown to contribute to the variance of the clinical
pain [220]. These investigators then showed that the maintenance
of experimentally induced pain in fibromyalgia patients requires
significantly less frequent stimulation than in normal controls,
and concluded that this heightened sensitivity to very low fre-
quency inputs contributes to the persistent pain in these patients
[218]. A later study showed that the temporal summation of pain
and its maintenance was widespread, and could be equally elicited
from hands or feet, leading to the conclusion that central sensitiza-
tion in these patients was generalized across the neuraxis [219]. In
an fMRI study they then found a stimulus and frequency depen-
dent activation in several brain regions in fibromyalgia patients
and controls, including ipsilateral and contralateral thalamus,
medial thalamus, S1, bilateral S2, mid- and posterior insula, rostral
and mid-anterior cingulate cortex. The stimulus temperatures nec-
essary to evoke equivalent levels of brain activity were, however,
significantly less in fibromyalgia patients, suggesting that the en-
hanced neural mechanisms in fibromyalgia are not the result of
selective enhancement at cortical levels [216]. The Staud and Price
group then designed experiments to see if peripheral sensitization
may contribute to the enhanced temporal summation of thermal
pain in fibromyalgia patients and concluded that it does not, based
on thermal thresholds [214]. Recently they have found using local
anesthetic injections though, that peripheral input from muscle
appears to be important in maintaining central sensitization in
FM patients [217]. This would mean that fibromyalgia may have
both peripheral and central contributions, whose extent may vary
from patient to patient. Certainly muscle afferents seem to have a
potent capacity in pre-clinical [244] and experimental human
studies [275] to induce central sensitization.

A quantitative sensory testing study in 85 fibromyalgia patients
and 40 matched controls found that the patients had altered heat
and cold thresholds and a reduced tolerance for pain, as well as a
reduced nociceptive reflex threshold, a measure of central excit-
ability [65]. The latter finding was sufficiently different from con-
trols that the authors suggest it could be used as a diagnostic
measure of central sensitization, identifying patients for whom
centrally acting drugs may be particularly beneficial. Other studies
have confirmed the increased generalized sensitivity in FM pa-
tients to pressure and thermal stimuli [94,173,179] and to electri-
cal stimulation of skin and muscle, with enhanced cortical evoked
potentials [66]. The data overall seem to support a major role for
central sensitization in the generation of the symptoms of FM,
and the success of centrally acting treatments, such as pregabalin
or duloxetine in treating these conditions, may reflect a reduction
in central sensitization in these patients.

5.5. Miscellaneous musculoskeletal disorders

Chronic neck pain resulting from whiplash is associated with
lowered pain thresholds in uninjured tissue [57,222]. Injection of
local anesthetic into myofascial trigger points in these patients re-
sults in an immediate increase in range of motion and elevation in
pressure pain thresholds, which was felt to reflect dynamic main-
tenance of central sensitization by afferent triggers [85]. Patients
with shoulder impingement syndrome also show widespread mus-
cle sensitivity and an increased number of trigger points [105]. A
widespread (bilateral) mechanical pain hypersensitivity is ob-
served in patients with unilateral epicondylalgia (tennis elbow)
interpreted as indicating central sensitization, possibly induced
by a peripheral trigger [75]. Similar generalized deep tissue hyper-
algesia can also be demonstrated in patients with chronic radiating
low back pain with intervertebral disc herniation [173]. Collec-
tively these data indicate that diverse musculoskeletal disorders
are characterized by a spread of pain sensitivity to deep uninjured
tissue and that low level peripheral inputs may maintain this.

5.6. Headache

The first intimation that headaches have an important compo-
nent mediated by central sensitization came from a study of spon-
taneous tension-type headaches which found that even in the
absence of headache pericranial muscle tenderness was increased
in patients compared to control subjects. During headache, muscle
tenderness increased and thermal pain threshold decreased in the
temporal region, but remained normal in the hand which was
interpreted as an indication that segmental central sensitization
contributed to pain in frequent sufferers of tension-type headache
[120]. This was then followed by the observation by Bernstein and
colleagues that cutaneous allodynia developed in 79% of patients
during migraine attacks in, and sometimes beyond the area of re-
ferred pain [36,37]. This finding has been repeated in several stud-
ies since then [52,161,135,207]. While cephalic and extracephalic
allodynia are well described, spontaneous body pain and allodynia
have also been reported as preceding migraine attacks [56]. Laser
evoked cutaneous pain thresholds are reduced during migraine at-
tacks and cortical evoked potentials increased [62]. No change in
heat pain thresholds are found in chronic tension-type headache,
but there is pericranial tenderness [63,80] and hyperalgesia of neck
shoulder muscles [81]. Nociceptive input from muscles has been
suggested to contribute to the induction of central sensitization
in tension-type headache [79], much as has been suggested for
FM. In patients with cluster headaches the nociceptive flexion re-
flex threshold is reduced on the symptomatic side [191]. In a pop-
ulation study on primary headaches in 523 patients, evidence for
pain hypersensitivity was found in those with tension type pain,
with a greater disturbance in individuals with chronic or more fre-
quent headaches, implying that central sensitization may contrib-
ute to the chronification of headache [30], something that is
supported by epidemiological data [31]. In a longitudinal prospec-
tive study on whether increased pain sensitivity is a cause or an ef-
fect, a study in 100 individuals found that subjects had normal
thresholds prior to the development of headache, but this de-
creased in those who then developed chronic tension-type head-
ache, suggesting that the pain hypersensitivity is a consequence
of frequent tension-type headaches, and not a predictor or risk fac-
tor [32], a finding interpreted as a showing that central sensitiza-
tion plays a role in the chronification of tension-type headaches.
Interestingly, a study in patients with either chronic migraine
and chronic tension-type headache found in both cohorts reduced
threshold for pressure, pinprick, blink, and the nociceptive flexion
reflex, as well as higher windup ratios [83], possibly reflecting a
common role for central sensitization in the chronification of dif-
ferent types of headache.

5.7. Neuropathic pain

The first demonstration of a likely contribution of central sensi-
tization to neuropathic pain came from a study by Campbell and
colleagues, who showed that an ischemic conduction block of large
myelinated fibers specifically reduced dynamic tactile allodynia
[42], a finding that was soon replicated [140]. Since then careful
phenotyping studies of conditions like carpal tunnel syndrome
have revealed enhanced bilateral sensitivity and an extraterritorial
spread of symptoms in patients with unilateral or single nerve
entrapment, supporting a contribution of central sensitization
[61,76,82,278]. Furthermore, ketamine reduces established periph-
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eral neuropathic pain [125] and chronic phantom limb pain [73]
indicating that ongoing activity- and NMDA receptor-dependent
synaptic plasticity may contribute to maintain neuropathic pain.
That tricyclic antidepressants, dual uptake inhibitors and calcium
channel alpha(2)-delta ligands, all centrally acting drugs that nor-
malize enhanced neural activity, are the current first line treat-
ments for neuropathic pain [72], reinforces the importance of the
central component of the pain and its suitability as a target for
treatment.

5.8. Complex regional pain syndrome (CRPS)

A prominent feature of chronic CRPS1 is tactile hyperesthesia
and pressure hyperalgesia [241], which can be registered as en-
hanced S1 activation by a neuromagnetometer [243]. There is also
thermal hyperalgesia in acute CRPS1 patients, which on the side
ipsilateral to the diseased limb, may have a peripheral component
due to ongoing aseptic inflammation, but the presence of contra-
lateral hypersensitivity in the absence of any inflammatory
changes points to an involvement of the CNS [108]. In a small ran-
domized placebo controlled trial intravenous ketamine reduced
CRPS pain [200].

5.9. Post-surgical pain

This is a very heterogenous group comprising acute postopera-
tive pain and persistent pain of multiple causes, including surgically
induced neuropathic pain [1,131]. In the acute phase, incisional pain
is associated with a secondary punctate hyperalgesia that is keta-
mine sensitive [223], with no spread in thermal sensitivity [143]
indicating induction of central sensitization. Considerable contro-
versy exists over whether pre-emptive treatment targeting central
sensitization is superior to postoperative treatment in treating
either the acute postoperative pain or its transition to chronic pain
[4,5,54,60,68,70,71,128,149,102,236,260]. Surprisingly, because of
numerous technical problems related to the design, conduct and
interpretation of such studies, this turns out to be a difficult issue
to resolve [134,167]. This is not the place to review the full literature
on pre-emptive analgesia, however my personal take on the avail-
able data is that there appears to be a small signal for pre- vs. post-
operative analgesic treatment in some settings, but it is likely not
generally clinically relevant. It seems clearly important though that
patients have full analgesia established on recovery from a general
anesthetic or adequate regional anesthesia during surgery, and this
can be maintained until surgical healing is well advanced
[19,14,277]. The treatment plan for controlling postoperative pain
can potentially include drugs with action on central sensitization
such as ketamine [184], pregabalin [34,162], gabapentin [202] and
duloxetine [106], which in the limited number of trials currently
available show some efficacy, but more RCT are required to assess
their utility in treating acute postoperative pain or in reducing the
risk of developing chronic pain [59].

5.10. Visceral pain hypersensitivity syndromes

Pain hypersensitivity is a feature of several common disorders
of the gastro-intestinal tract including irritable bowel syndrome,
non-cardiac chest pain and chronic pancreatitis that all appear to
have a central sensitization component. A majority of IBS patients
have both rectal and somatic hypersensitivity [249]. Repetitive sig-
moid stimulation in patients with IBS induces rectal hyperalgesia
and viscerosomatic referral [169]. Local rectal anesthesia reduces
rectal and somatic pain in irritable bowel syndrome patients, sup-
porting the possibility that visceral hyperalgesia and secondary
cutaneous hyperalgesia in irritable bowel syndrome are the results
of central sensitization dynamically maintained by input from the
GIT. Patients with non-cardiac chest pain have esophageal hyper-
sensitivity [195], with a reduced tolerance to repeated distension,
increased size of referred pain and a greater propensity to show
secondary hyperalgesia after acid infusion in their lower esopha-
gus [69], all interpreted as reflecting the consequence of central
sensitization. Chronic pancreatitis is associated with generalized
deep pressure hyperalgesia [39,174] and patients display greater
degree and spatial extent secondary hyperalgesia elicited by repet-
itive experimental stimulation, suggesting enhanced central sensi-
tization [67] that is reduced by a thorascopic splanchnic
denervation [38], which may reflect that visceral input from the
pancreas maintains the central sensitization.

In the urological tract, pain hypersensitivity is a feature of inter-
stitial cystitis, chronic prostatitis, endometriosis, and vulvodynia,
conditions whose pathophysiology and etiology are however,
poorly understood. Although central sensitization has been hypoth-
esized to contribute [137], not much data are available and few
studies have been performed. Men with chronic prostatitis have
though heightened pain sensitivity in the perineum [239,276],
while women with vulvodynia have an enhanced post capsaicin
allodynia and secondary hyperalgesia compared to controls [84].

5.11. Co-morbidity of pain conditions characterized by pain
hypersensitivity

Pain can be defined as nociceptive when it is generated by nox-
ious stimuli, inflammatory when produced by tissue injury and/or
immune cell activation, and neuropathic, when it is due to a lesion
of the nervous system. What about pain conditions though, where
there is no noxious stimulus, inflammation or damage to the ner-
vous system? There are several common syndromes that present
with pain hypersensitivity but no clear etiological factor, i.e. con-
sidered ‘‘unexplained” and which might actually reflect not only
peripheral pathology but also a primary dysfunction of the nervous
system. These include fibromyalgia, tension-type headache, tem-
poromandibular joint disease and irritable bowel syndrome, all of
which may have a specific contribution to their phenotype by cen-
tral sensitization, as detailed above. If a heightened sensitivity of
the CNS or an increased propensity to develop central sensitization
is a common feature of these syndromes, one would expect that
there may be increased co-occurrence or comorbidity of the differ-
ent conditions. It is also possible that an enhanced capacity to pro-
duce or maintain central sensitization is the primary defect in
some of these syndromes.

In a study on almost 4000 twins for comorbidity of chronic
fatigue, low back pain, irritable bowel syndrome, chronic ten-
sion-type headache, temporomandibular joint disease, major
depression, panic attacks and post-traumatic stress disorder, asso-
ciations were found that far exceeded those expected by chance,
and the conclusion was that these conditions share a common eti-
ology [199]. Another large epidemiological study on 44,000 indi-
viduals including twins for comorbidity with chronic widespread
pain found co-occurrence with chronic fatigue, joint pain, depres-
sive symptoms, and irritable bowel syndrome, leading to the con-
clusion that associations between chronic widespread pain and its
comorbidities may include genetic factors [127]. Yet another study
on 2299 subjects for four unexplained syndromes; chronic wide
spread pain, chronic orofacial pain, irritable bowel and chronic fa-
tigue again found that the occurrence of multiple syndromes was
greater than expected by chance [2]. These epidemiological find-
ings strongly suggest that there may be a common mechanistic ba-
sis for these diverse conditions, and that may have a hereditary
component.

Smaller studies have found comorbidity between fibromyalgia
and the following conditions: migraine in females but not males
[111], primary headache [64], chronic fatigue symptom [89],
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systemic lupus erythematosus [213], irritable bowel syndrome
[144], rheumatoid arthritis [183], the premenstrual syndrome [3],
chronic urticaria [235] and cervical myofascial pain syndrome
[40]. Comorbidity has been shown also for back pain and temporo-
mandibular disorders [248], migraine and temporomandibular dis-
orders [91], irritable bowel syndrome and functional dyspepsia,
fibromyalgia and chronic pelvic pain [185], and finally between
migraine and irritable bowel syndrome, chronic fatigue and fibro-
myalgia [232]. There is also an overlap between urological disor-
ders like chronic pelvic pain, interstitial cystitis, painful bladder
syndrome, chronic prostatitis and vulvodynia with fibromyalgia,
chronic fatigue, temporomandibular disorders and irritable bowel
syndrome [187], and more specifically between vulvodynia, fibro-
myalgia and irritable bowel syndrome [10].

The overwhelming conclusion from these diverse epidemiolog-
ical studies is that chronic pain hypersensitivity in the absence of
inflammation or nerve damage results in apparently phenotypically
different syndromes depending on the tissue/organs affected. How-
ever, the overall similarity of the sensitivity changes may reflect a
common contribution of central sensitization, and this may account
for the unexpectedly high comorbid rate of the apparently different
syndromes. To test if there are indeed central sensitization syn-
dromes, we will need a clear set of diagnostic criteria and biomark-
ers for the phenomenon. If this hypothesis is correct, the
implications may be that treatment strategies targeted at normaliz-
ing hyperexcitability in the CNS may have a shared efficacy for the
different manifestations of the central sensitization syndrome.

6. Conclusions

Clinical pain is not simply the consequence of a ‘‘switching on”
of the ‘‘pain system” in the periphery by a particular pathology, but
instead reflects to a substantial extent, the state of excitability of
central nociceptive circuits. The induction of activity-dependent
increases in synaptic function in these circuits triggered and main-
tained by dynamic nociceptor inputs, shifts the sensitivity of the
pain system such that normally innocuous inputs can activate it
and the perceptual responses to noxious inputs are exaggerated,
prolonged and spread widely. These sensory changes represent
the manifestation of central sensitization, and extensive experi-
mental medicine and clinical investigations over the past twenty
years have revealed it to be an important component of the pain
hypersensitivity present many patients. While considerable pro-
gress has been made in teasing out the cellular and molecular
mechanism responsible [148], much remains still to be learned,
particularly which genetic and environmental contributors in-
crease the risk of developing central sensitization in particular sys-
tems, exactly what triggers and sustains the phenomenon, and
what is responsible in some individuals for its persistence. Never-
theless, the identification of the contribution of central sensitiza-
tion to many ‘‘unexplained” clinical pain conditions has both
provided a mechanistic explanation, and offered a therapeutic
target.
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