Dynamic Neuromuscular Stabilisation: Difference between revisions

From WikiMSK

No edit summary
No edit summary
Line 16: Line 16:
The integrated stabilising system of the spine refers to the integration of the deep stabilising muscles with other larger muscles groups. The deep stabilising system is a combination of the diaphragm, the pelvic floor, the entire abdominal wall, multifidi, and deep neck flexors. When there is synergy, coordination and timing of this system then even before any purposeful movement the diaphragm will descend. The deep stabilising musculature will respond to the resultant increased abdominal pressure, a fixed point is created, and other larger muscles such as rectus femoris can then work off that fixed point. This is a "feedforward mechanism."  
The integrated stabilising system of the spine refers to the integration of the deep stabilising muscles with other larger muscles groups. The deep stabilising system is a combination of the diaphragm, the pelvic floor, the entire abdominal wall, multifidi, and deep neck flexors. When there is synergy, coordination and timing of this system then even before any purposeful movement the diaphragm will descend. The deep stabilising musculature will respond to the resultant increased abdominal pressure, a fixed point is created, and other larger muscles such as rectus femoris can then work off that fixed point. This is a "feedforward mechanism."  


The dynamic neuromuscular approach focuses on assessing and training the deep stabilising system, and facilitating and reintegrating the hardwired genetic locomotor programme. As adults the locomotor programme can become corrupted through postural habituation, repetitive motions, past injury, and pathological central nervous system maturation. Despite corruption, the potential for facilitation is still there.
==Approach==
The DNS approach focuses on assessing and training the deep stabilising system. It aims to facilitate and reintegrate the hardwired genetic locomotor programme and utilises the positions of the developmental milestones. As adults the locomotor programme can become corrupted through postural habituation, repetitive motions, past injury, and pathological central nervous system maturation. Despite corruption, the potential for facilitation is still there.  


==Anatomical Norms==
There are many different ideas about what an ideal posture is. Despite differences in body shapes, every human has a central nervous system and has gone through developmental milestones. Ontogenesis shows us genetically determined ideal posture, and is automatic with healthy central nervous system maturation. For example the squat position of a 12 month old uses the same locomotor programme as a powerlifter doing a loaded squat.
There are many different ideas about what an ideal posture is. Despite differences in body shapes, every human has a central nervous system and has gone through developmental milestones.


[[Category:Nonmainstream Articles]]
[[Category:Nonmainstream Articles]]
[[Category:Physical Therapy Approaches]]
[[Category:Physical Therapy Approaches]]
[[Category:Stubs]]
[[Category:Stubs]]

Revision as of 08:03, 29 January 2021

This article is a stub.
This page or section deals with a topic that is not widely recognised or accepted.
Please use your clinical judgement and note that this is not necessarily standard practice in NZ.


Dynamic neuromuscular stabilization (DNS) is based on principles of developmental kinesiology i.e. the maturing human locomotor system. The approach views certain types of pain and dysfunction having defects in neuromotor programming. DNS was developed by Professor Pavel Kolar in the Czech Republic, who was in turn influenced by three other prominent Czech clinicians. It is allegedly practiced widely in many parts of Europe in mainstream clinical centres, but is largely unknown in New Zealand. It is a functional approach rather than the more traditional structural biomedical approach.

Developmental Kinesiology

Ontogenesis is a term that refers to the development of motor functions postnatally. When humans are first born our neurological and locomotor systems are immature, especially when compared to other mammalian species. As our central nervous system matures our postural foundations are increasingly established, with specific motor patterns at certain developmental milestones. The development of these motor patterns are genetically programmed rather than learned. There are three levels of postnatal CNS maturation with corresponding three levels of sensory-motor control.

In the neonatal period and first few weeks of life the spinal and brain stem control systems are dominant. There is functional and structural immaturity with no balance and no postural function. There is no synergy and coordination of the deep spinal stabilising structures to create a fixed point through the pelvis and trunk. There is excessive asymmetry, i.e. if the head is moved then the whole body moves. Without deep stablisation, there is anterior pelvic tilt, flaring of the rib cage, and elevation and protraction of the shoulder girdle. Primitive reflexes such as the Moro and sucking reflexes are positive.

At three months continuing to around 18 months we see integration of the subcortical region with the establishment of postural foundations and its synergy, coordination, and timing. There is the development of fixed stabilising points through the trunk and pelvis. With these fixed points the larger muscle groups can work through them allowing isolated movements and we see less asymmetry. We see increasing synergy and coordination of the deep stabilising system allowing the child to reach higher and more unstable positions - from prone and supine positions (stablisation in the saggital plane), to rolling over, crawling, kneeling, squatting, and eventually walking. Gaze fixation and somatosensory input also develop allowing increasing input from the environment. Primitive reflexes are inhibited in this time period.

From two to six years and beyond we see integration of the cortical system in the central nervous system. There is motor learning with selective movement, fine motor skills, agility, and motor dexterity.

The Integrated Stabilising System of the Spine

The integrated stabilising system of the spine refers to the integration of the deep stabilising muscles with other larger muscles groups. The deep stabilising system is a combination of the diaphragm, the pelvic floor, the entire abdominal wall, multifidi, and deep neck flexors. When there is synergy, coordination and timing of this system then even before any purposeful movement the diaphragm will descend. The deep stabilising musculature will respond to the resultant increased abdominal pressure, a fixed point is created, and other larger muscles such as rectus femoris can then work off that fixed point. This is a "feedforward mechanism."

Approach

The DNS approach focuses on assessing and training the deep stabilising system. It aims to facilitate and reintegrate the hardwired genetic locomotor programme and utilises the positions of the developmental milestones. As adults the locomotor programme can become corrupted through postural habituation, repetitive motions, past injury, and pathological central nervous system maturation. Despite corruption, the potential for facilitation is still there.

There are many different ideas about what an ideal posture is. Despite differences in body shapes, every human has a central nervous system and has gone through developmental milestones. Ontogenesis shows us genetically determined ideal posture, and is automatic with healthy central nervous system maturation. For example the squat position of a 12 month old uses the same locomotor programme as a powerlifter doing a loaded squat.